Effect of eight rootstocks on the production of two sweet cherry varieties.

Main Article Content

Eduardo Domingo Tersoglio

Abstract

Rootstocks improve the adaptation of varieties to different environmental conditions and increase production. High production and low loss ratio are required to achieve economic sustainability. The influence of SL64, MxM60, MxM14, CAB6P, Weiroot 13, GiSeLa®5 and GiSeLa®6 and Mariana 2624-Adara cherry rootstocks on the production of two cherry varieties was measured. The experimental design was for complete blocks at random, with six replicates. The variables were: crop production per tree (PrFC), production affinity (AfPr), good fruit production without damages or defects (PrFS), loss proportion (fPer), precocity (Prec), canopy volume (VDct) and fruit load. Under the soil and climatic conditions of the region and the planting density of the experiment, Bing on MxM60 or W13 and Celeste on SL64 or MxM60 had high PrFC and PrFS and according to variety they had low fPer and frequently exceeding the PrFS mean. PrFS was strongly related to PrFC and both depended on rootstock and variety interaction. The most precocious was M2624-Adara. The VDct was associated with PrFC but was an imprecise indicator. The SL64 or M2624-Adara rootstocks showed high AfPr for Celeste variety, whereas G5, G6 and W13 did for Bing.

Article Details

How to Cite
Effect of eight rootstocks on the production of two sweet cherry varieties. (2021). AgriScientia, 38(2), 63-73. https://doi.org/10.31047/1668.298x.v38.n2.27429
Section
Articles
Author Biography

Eduardo Domingo Tersoglio, INTA Mendoza

Investigador en Fruticultura

How to Cite

Effect of eight rootstocks on the production of two sweet cherry varieties. (2021). AgriScientia, 38(2), 63-73. https://doi.org/10.31047/1668.298x.v38.n2.27429

References

Aglar, E. y Yıldız, K. (2014). Influence of rootstocks (Gisela 5, Gisela 6, MaxMa, SL 64) on performance of ‘0900

Ziraat’ sweet cherry. Journal of Basic and Applied Sciences, 10, 60-66.

Ampatzidis, Y. y Whiting, M. (2013). Training system affects sweet cherry harvest efficiency. HortScience, 48(5), 547–555.

Cantín, C., Pinochet, J., Gorgoncena, Y. y Moreno, M. (2010). Growth, yield and fruit quality of ‘Van’ and ‘Stark Hardy Giant’ sweet cherry cultivars as influenced by grafting on different rootstocks. Scientia Horticulturae, 123(3), 329-335.

Erturk, U., Sivritepe, N., Yerlikaya, C., Bor, M., Ozdemir, F. y Turkan, I. (2007). Responses of the cherry rootstock to salinity in vitro. Biologia Plantarum, 51(3), 597-600

Fajt, N., Jug, T., Biško, A., Purgaj, B., Folini, L., Stainbauer, L. y Usenik, V. s.f. AlpeAdria Trial - Sweet cherry Regina on three dwarf rootstocks and different plant distances. Recuperado de: https://www.bordeaux.inra.fr/cherry/docs/dossiers/Activities/Meetings/2014%2010%2013-15_4th%20MC%20and%20all%20WG%20Meeting_Bordeaux/Posters/Fajt_Bordeaux2014.pdf

Fajt, N., Folini, L., Bassi, G. y Siegler, H. (2014). Lapins’on ten cherry rootstocks in the Alpe Adria Region. Acta Horticulturae, 1020, 371-376.

Gainza, F., Opazo, I., Guajardo, V., Meza, P., Ortiz, M., Pinochet, J. y Muñoz, C. (2015). Rootstock breeding in Prunus species: Ongoing efforts and new challenges.Chilean Journal of Agricultural Research, 75, 6-16. https://dx.doi.org/10.4067/S0718-58392015000300002

Godini, A., Palasciano, M., Ferrara, G., Camposeo, S. y Pacifico, A. (2008). On the advancement of bud break and fruit ripening induced by hydrogen cyanamide (Dormex®) in sweet cherry: A three-year study. Acta Horticulturae, 795, 469-477.

Gonçalves, B., Moutinho-Pereira, J., Santos, A., Silva, A., Bacelar, E., Correia, C. y Rosa, E. (2006). Scionrootstock interaction affects the physiology and fruit quality of sweet cherry. Tree Physiology, 26, 93-104.

Gratacós, N., Cortés, B. y Kulczewski, B. (2007). New rootstocks for the Chilean cherry industry. Compact Fruit Tree, 4, 19-21.

Ivanov, I., Balan, V., PeŞteanu, A., Vamasescu, S., Balan, P. y Sarban, V. (2018). Influence of the planting distance

and the crown shape on the fruit harvest and the productive potential of cherry trees in a high-density system. Bulletin UASVM Horticulture, 75(2), 163-168. dx.doi.org/10.15835/buasvmcn-hort:2018.0014

Jiménez, S., Pinochet, J., Gogorcena, Y., Betrán, J. y Moreno, M. (2007). Influence of different vigour cherry rootstocks on leaves and shoots mineral composition. Scientia Horticulturae, 112(1), 73–79.

Ljubojevi´c, M., Ognjanov, V., Bara´c, G., Duli´c, J., Miodragovi´c, M., Sekuli´c, M. y Jovanovi´c, N. (2016). Cherry tree growth models for orchard management improvement. Turkish Journal of Agriculture and Forestry, 40, 839-854. https://doi.org/10.3906/tar-1606-14

Long, L. y Kaiser, C. (2010). Sweet cherry roostocks for the Pacific Northwest [Documento PDF]. Pacific Northwest Extension Publishing. https://catalog.extension.oregonstate.edu/sites/catalog/files/project/pdf/pnw619.pdf

López-Ortega, G., García-Montiel, F., Bayo-Canhaa, A., Frutos-Ruiza, C. y Frutos-Tomás, D. (2016). Rootstock effects on the growth, yield and fruit quality of sweetcherry cv. ‘Newstar’ in the growing conditions of the Region of Murcia. Scientia Horticulturae, 198, 326–335. https://doi.org/10.1016/j.scienta.2015.11.041

Measham, P., Gracie, A., Wilson, S. y Bound, A. (2010). Vascular flow of water induces side cracking in sweet

cherry (Prunus avium L.). Advances in Horticultural Science, 24(4), 243–248.

Measham, P., Wilson, S., Gracie, A. y Bound, S. (2014). Tree water relations: flow and fruit. Agriculture Water

Management, 137, 59–67. Mendenhall, W. y Sincich, T. (1995). Statistics for engineering and the sciences (4a. edición). Prentice Hall.

Moreno, M., Tabuenca, M. y Cambra, R. (1995). Adara, a plum rootstock for cherries and other stone fruit species. Hortscience, 30(6), 1316-1317.

Papadakis, I., Veneti, G., Chatzissavvidis, C. y Therios, I. (2018). Physiological and growth responses of sour cherry (Prunus cerasus L.) plants subjected to shortterm salinity stress. Acta Botanica Croatica, 77(2), 197–202.

Pimentel, P., Almada, R., Salvatierra, A., Toro, G., Arismendi, M., Pino, M.T., Sagredo, B. y Pinto, M. (2014). Physiological and morphological responses of Prunus species with different degree of tolerance to long-term root hypoxia. Scientia Horticulturae, 180, 14-23. https://doi.org/10.1016/j.scienta.2014.09.055

Rana, R., Andriano, A., Giungato, P. y Tricase, C. (2019). Carbon footprint of processed sweet cherries (Prunusavium L.): From nursery to market. Journal of Cleaner Production, 227, 900-910. https://doi.org/10.1016/j.jclepro.2019.04.162

Robinson, T., Andersen, R. y Hoying, S. (2008). Performance of Gisela® rootstocks in six high density sweet cherry training systems in the northeastern United States. Acta Horticulturae, 795, part 1, 245-254.

Sansavini, S. y Lugli, S. (2014). New rootstocks for intensive sweet cherry plantations. Acta Horticulturae, 1020, 411-434.

Schumann C. y Knoche M. (2020). Swelling of cell walls in mature sweet cherry fruit: factors and mechanisms. Planta, 251, 65. https://doi.org/10.1007/s00425-020-03352-y

Seavert, C. F. y Long, L. E. (2007). Financial and economic comparison between establishing a standard and high

density sweet cherry orchard in Oregon, USA. Acta Horticulturae, 732, 501–504.

Serradilla, M., Hernández, A., López-Corrales, M., Ruiz-Moyano, S., Guía-Córdoba, M. y Martín, A. (2016). Composition of the cherry (Prunus avium L. and Prunus cerasus L.; Rosaceae). En: M. Simmonds y V. R. Preedy (Eds), Nutritional composition of fruit cultivars (127-147). https://doi.org/10.1016/B978-0-12-408117-8.00006-4

Silva, H. y Rodriguez, J. (1995). Eficiencia y cálculo de la dosis de la fertilización nitrogenada. En: C. Bonomelli, (Ed.), Fertilización de plantaciones frutales (177-212). Pontificia Universidad Católica de Chile Systat. Tablecurve-2D® (2005, version de prueba) [Software]. https://web.archive.org/web/20070427231959/http://www.systat.com/downloads/?sec=d002

Tersoglio, E. y Naranjo, G. (2007). Características del frío invernal de las zonas productoras de cerezas de la provincia de Mendoza, Argentina. Parte I. Información Técnica Económica Agraria, 103(4), 186-197.

Tersoglio, E. y Setien, N. (2016). Efecto de la combinación Adara-M2624 y otros siete portainjertos sobre las características del dosel de dos variedades de cerezo. Agriscientia, 33(2), 113-125.

Usenik, V., Fajt, N. y Štampar, F. (2006). Effects of rootstocks and training system on growth, precocity and productivity of sweet cherry. Journal of Horticultural Science and Biotechnology, 81(1), 153-157.

Whiting, M., Lang, G. y Ophardt, D. (2005). Rootstocks and training system affect sweet cherry growth, yield

and fruit quality. HortScience, 40(3), 582-586.

Winkler, A., Brüggenwirth, M., Ngo, N. y Knoche, M. (2016). Fruit apoplast tension draws xylem water into mature sweet cherries. Scientia Horticulturae, 209, 270–278.