Estimation of the balance of greenhouse gases in livestock production systems in the Salado river basin

Main Article Content

Elizabeth Jacobo
María Cristina Vecchio
Adriana Rodríguez

Abstract

We compared the balance of greenhouse gasses (GHG) of two contrasting livestock production models of the Salado river basin, Buenos Aires province. One model was characterized by the predominance of native grassland in good condition because of the application of controlled grazing (MP 1) and the other model by a larger surface of cultivated pastures and annual forage crops, higher stocking rate and beef production (MP 2). We applied the IPCC (Intergovernmental Panel on Climate Change) methodology for estimating primary emissions. We incorporated the estimation of secondary emissions and the gain or loss of soil carbon of to the GHG balance. Total emissions were higher in MP 2 than MP 1 (4500 vs. 2273 kg CO2 eq. ha-1 year-1 respectively, p<0,01). MP 1 sequestered carbon at a rate of 1851 kg CO2 eq. ha-1 year-1, while MP 2 emitted carbon at a rate of 601 kg CO2 eq. ha-1 year-1. GHF balance was ten times more negative for MP 2 than MP 1, whose balance resulted neutral. Livestock systems of Salado river basin with predominance of native grassland in good condition are able to mitigate the effect of global warming.

Article Details

How to Cite
Estimation of the balance of greenhouse gases in livestock production systems in the Salado river basin. (2020). AgriScientia, 37(1), 15-32. https://doi.org/10.31047/1668.298x.v37.n1.27514
Section
Articles

How to Cite

Estimation of the balance of greenhouse gases in livestock production systems in the Salado river basin. (2020). AgriScientia, 37(1), 15-32. https://doi.org/10.31047/1668.298x.v37.n1.27514

References

Allard, V., Soussana, J.F., Falcimagne, R., Berbigier, P., Bonnefond, J.M., Ceschia E… Pinares-Patino C. (2007). The role of grazing management for the net biome productivity and greenhouse gas budget (CO2, N2O and CH4) of semi-natural grassland. Agriculture,Ecosystems and Environment, 121 (1-2), 47-58. https://doi.org/10.1016/j.agee.2006.12.004

Ander-Egg, E. (2001). Métodos y técnicas de investigación social. Buenos Aires, Argentina: Grupo Editorial Lumen.

Batalla, I., Knudsen, M. T., Mogensen, L., del Hierro, Ó., Pinto, M. y Hermansen, J. E. (2015). Carbon footprint of milk from sheep farming systems in northern Spain including soil carbon sequestration in grasslands. Journal of Cleaner Production, 104, 121-129. https://doi.org/10.1016/j.jclepro.2015.05.043

Bavera, G. A. (2000). Digestibilidad de algunos forrajes empleados en bovinos en pastoreo. Recuperado de: https://documents.tips/documents/digestibilidad-de-algunos-forrajes-empleados-en-empleados-en-bovinos-a-pastoreo.html

Beauchemin, K. A., Janzen, H., Little, S., McAllister, T. y McGinn, S. (2010). Life cycle assessment of greenhouse gas emissions from beef production in western Canada: A case study. Agricultural Systems 103 (6), 371-379. https://doi.org/10.1016/j.agsy.2010.03.008

Beauchemin, K. A., Janzen, H., Little, S. McAllister, T. y McGinn, S. (2011). Mitigation of greenhouse gas emissions from beef production in western Canada–Evaluation using farm-based life cycle assessment. Animal Feed Science and Technology, 166-167, 663-677. https://doi.org/10.1016/j.anifeedsci.2011.04.047

Bellarby, J., Tirado, R., Leip, A., Weiss, F., Lesschen, J. P. y Smith, P. (2013). Livestock greenhouse gas emissions and mitigation potential in Europe. Global change biology, 19 (1), 3-18. https://doi.org/10.1111/j.1365-2486.2012.02786.x

Berhongaray, G., Alvarez, R., De Paepe, J., Caride, C. y Cantet, R. (2013). Land use effects on soil carbon in the Argentine Pampas. Geoderma, 192, 97-110. https://doi.org/10.1016/j.geoderma.2012.07.016

Bruce, J. P., Frome, M., Haites, E., Janzen, H., Lal, R. y Paustian, K. (1999). Carbon sequestration in soils. Journal of soil and water conservation, 54 (1), 382-389.

Casey, J. W. y Holden, N. M. (2006). Quantification of GHG emissions from sucker-beef production in Ireland. Agricultural Systems, 90 (1-3), 79-98. https://doi.org/10.1016/j.agsy.2005.11.008

Cederberg, C. y Stadig, M. (2003). System expansion and allocation in life cycle assessment of milk and beef production. The International Journal of Life Cycle Assessment, 8 (6), 350-356. https://doi.org/10.1007/BF02978508

Conant, R. T., Paustian, K. y Elliott E. T. (2001). Grassland management and conversion into grassland: effects on soil carbon. Ecological Applications 11 (2), 343-355. https://doi.org/10.1890/1051-0761(2001)011[0343:GMACIG]2.0.CO;2

Conant, R.T., Cerri, C.E., Osborne, B.B. y Paustian, K. (2017). Grassland management impacts on soil carbon stocks: a new synthesis. Ecological Applications 27(2), 662–668.https://doi.org/10.1002/eap.1473

Del Prado, A., Crosson, P., Olesen, J. E. y Rotz, C. (2013). Whole-farm models to quantify greenhouse gas emissions and their potential use for linking climate change mitigation and adaptation in temperate grassland ruminant-based farming systems. Animal, 7 (S2), 373-385. https://doi.org/10.1017/S1751731113000748

Deregibus, V. A., Jacobo, E. J. y Rodríguez, A. M. (1995). Perspective: Improvement in rangeland condition of the Flooding Pampa of Argentina through controlled grazing. African Journal of Range & Forage Science, 12 (2), 92-96. https://doi.org/10.1080/10220119.1995.9647873

Deregibus, V. A. (1988). Importancia de los pastizales naturales en la República Argentina: situación presente y futura. Revista Argentina de Producción Animal, 8 (1), 67-78.

Drewer, J., Anderson, M., Levy, P. E., Scholtes, B., Helfter, C., Parker, J., … Skiba U.M. (2017). The impact of ploughing intensively managed temperate grasslands on N2O, CH4 and CO2 fluxes. Plant Soil, 411,193–208. https://doi.org/10.1007/s11104-016-3023-x

FAO (Food and Agriculture Organization of the United Nations). (2006). Livestock's long shadow: environmental issues and options. Recuperado de: http://www.fao.org/docrep/010/a0701e/a0701e00.HTM.

FAO (Food and Agriculture Organization of the United Nations) y New Zealand Agricultural Greenhouse Gas Research Centre. (2017). Low-emissions development of the beef cattle sector in Argentina. Reducing enteric methane for food security and livelihoods. Recuperado de http://www.fao.org/3/a-i7671e.pdf

Fernández, H. (2010). Tablas de composición de alimentos para rumiantes. Recuperado de http://www.produccion-animal.com.ar/tablas_composicion_alimentos/46-Tabla.pdf

Follett, R. F. y Reed, D. A. (2010). Soil carbon sequestration in grazing lands: societal benefits and policy implications. Rangeland Ecology & Management, 63 (1), 4-15. https://doi.org/10.2111/08-225.1

Garnett, T., Godde, C., Muller, A., Röös, E., Smith, P., de Boer, I.,...van Zanten, H. (2017). Grazed and confused? Food Climate Research Network, Environmental Change Institute, University of Oxford. Recuperado de https://www.fcrn.org.uk/projects/grazed-and-confused

Gifford, R. M., Cheney, N. P., Noble, J. C., Russel, J. S., Wellington, A. B., Zammit, C. y Barson, M. M. (1992). Australian land use, primary production of vegetation and carbon pools in relation to atmospheric carbon dioxide concentration. En Gifford, R. M. y Barson, M. M. (Eds.), Australia’s Renewable Resources: Sustainability and Global Change (pp. 151–187). Canberra, Australia: Australian Government Publishing Service.

Hidalgo, L. y Cahuépé, M. A. (1991). Producción de forraje de las comunidades de la Depresión del Salado. CREA, 149, 58-62.

IPCC (Intergovernmental Panel on Climate Change) (2006). Guidelines for National Greenhouse Gas Inventories. Recuperado de https://www.ipcc-nggip.iges.or.jp/public/2006gl/spanish/vol4.html

Jacobo, E. J. y Rodríguez, A. M. (2009). Valorización de pastizales naturales en ambientes húmedos. Indicadores de sustentabilidad. En Actas del V Congreso de la Asociación Argentina para el Manejo de los Pastizales Naturales (pp 20-29). Corrientes, Argentina: Asociación Argentina para el Manejo de los Pastizales Naturales.

Jacobo, E. J., Rodríguez, A. M. Bartoloni, N. y Deregibus, V. A. (2006). Rotational grazing effects on rangeland vegetation at a farm scale. Rangel andEcology & Management, 59 (3), 249-257. https://doi.org/10.2111/05-129R1.1

Jacobo, E. J., Rodríguez, A. M., González, J. H. y Golluscio, R. A. (2016). Efectos de la intensificación ganadera sobre la eficiencia en el uso de la energía fósil y la conservación del pastizal en la cuenca baja del río Salado, Argentina. Agriscientia. 33 (1), 1-14. https://doi.org/10.31047/1668.298x.v33.n1.16567

Jacobo, E.J., Rodríguez, A. M., Rossi, J. L., Salgado, L., y Deregibus, V. A. (2000). Rotational stocking improves winter production of Italian ryegrass on argentinian rangelands. Journal of Range Management. 53 (5), 483-488. https://doi.org/10.2307/4003648

Lal, R. (2003). Global Potential of Soil Carbon Sequestration to Mitigate the Greenhouse Effect, Critical Reviews in Plant Sciences,22 (2),151-184. https://doi.org/10.1080/713610854

Lal, R. (2004). Soil carbon sequestration impacts on global climate change and food security. Science, 304 (5677), 1623-1627.https://doi.org/10.1126/science.1097396

Lovett, D., Stack, L., Lovell, S., Callan, J., Flynn, B., Hawkins, M. y O’Mara, F. (2005). Manipulating enteric methane emissions and animal performance of late-lactation dairy cows through concentrate supplementation at pasture. Journal of dairy science, 88 (8), 2836-2842. https://doi.org/10.3168/jds.S0022-0302(05)72964-7

Mccune, B., y Mefford, M. J. (2006). PC-ORD. Multivariate Analysis of Ecological Data. (Version 5.13)[Software]. Gleneden Beach, Oregon: MjM Software.

McGinn, S. M., Beauchemin, K. A., Coates, T. y McGeough, E. J. (2014). Cattle Methane Emission and Pasture Carbon Dioxide Balance of a Grazed Grassland. Journal of Environmental Quality, 43 (3), 820–828. https://doi.org/10.2134/jeq2013.09.0371.

McSherry, M. E. and Ritchie, M. E. (2013). Effects of grazing on grassland soil carbon: a global review.Global Change Biology, 19 (5),1347–1357. https://doi.org/10.1111/gcb.12144

Meyer, R., Cullen, B. R., y Eckard, R. J. (2016). Modelling the influence of soil carbon on net greenhouse gas emissions from grazed pastures. Animal Production Science, 56 (3), 585-593.https://doi.org/10.1071/AN15508

Nemecek, T., Dubois, D., Huguenin-Elie, O. y Gaillard G. (2011). Life cycle assessment of Swiss farming systems: I. Integrated and organic farming. Agricultural Systems, 104 (3), 217-232. https://doi.org/10.1016/j.agsy.2010.10.002

Nieto, M. I., Barrantes, O., Privitello, L. y Reiné, R. (2018). Greenhouse Gas Emissions from Beef Grazing Systems in Semi-Arid Rangelands of Central Argentina. Sustainability, 10 (11), 4228. https://doi.org/10.3390/su10114228

O’Mara, F. P. (2011). The significance of livestock as a contributor to global greenhouse gas emissions today and inthe near future. Animal Feed Science and Technology,166–167, 7–15. https://doi.org/10.1016/j.anifeedsci.2011.04.074

Ogino, A., Orito, H., Shimada, K. y Hirooka, H. (2007). Evaluating environmental impacts of the Japanese beef cow–calf system by the life cycle assessment method. Animal Science Journal, 78 (4), 424-432. https://doi.org/10.1111/j.1740-0929.2007.00457.x

Ogle, S.M., Conant, R. T. y Paustian, K. (2004). Deriving grassland management factors for a carbon accounting method developed by the intergovernmental panel on climate change. Environmental Management, 33, 474-484. https://doi.org/10.1007/s00267-003-9105-6

Pelletier, N., Pirog, R. y Rasmussen, R. (2010). Comparative life cycle environmental impacts of three beef production strategies in the Upper Midwestern United States. Agricultural Systems, 103 (6), 380-389. https://doi.org/10.1016/j.agsy.2010.03.009

Rearte, D. (2011a). Situación actual y prospectiva de la situación de carne vacuna. INTA. Recuperado de: https://inta.gob.ar/documentos/situacion-actual-y-prospectiva-de-la-produccion-de-carne-vacuna

Rearte, D. (2011b). Situación actual y prospectiva de la ganadería argentina, un enfoque regional. Archivos Latinoamericanos de Producción Animal, 19 (3-4), 46-49.

Recavarren, P. M. y Martinefsky, M. J. (2009). Alerta amarillo: la degradación de los recursos forrajeros. Visión Rural, 16 (77), 29-31.

Rodríguez, A. M. y Jacobo E. J. (2010). Glyphosate effects on floristic composition and species diversity in the Flooding Pampa grassland (Argentina). Agriculture, Ecosystems & Environment, 138 (3-4), 222-231. https://doi.org/10.1016/j.agee.2010.05.003

Rodríguez, A. M. y Jacobo, E. J. (2013). Glyphosate effects on seed bank andvegetation composition of temperate grasslands. Applied Vegetation Science, 16 (1), 51-62. https://doi.org/10.1111/j.1654-109X.2012.01213.x

Rodríguez, A. M., Jacobo, E. J. y Golluscio, R. A. (2018). Glyphosate Alters Aboveground Net Primary Production, Soil Organic Carbon and Nutrients in Pampean Grasslands (Argentina). Rangeland Ecology & Management, 71(1), 119–125. https://doi.org/10.1016/j.rama.2017.07.009

Rotz, C. A., Montes, F. y Chianese, D. S. (2010). The carbon footprint of dairy production systems through partial life cycle assessment. Journal of Dairy Science, 93 (3), 1266–1282. https://doi.org/10.3168/jds.2009-2162

Schils, R., Olesen, J. E., Del Prado, A. y Soussana, J. (2007). A review of farm level modelling approaches for mitigating greenhouse gas emissions from ruminant livestock systems. Livestock Science, 112 (3), 240-251. https://doi.org/10.1016/j.livsci.2007.09.005

Schulze, E., Luyssaert, S., Ciais, P., Freibauer, A., Janssens, I. A., Soussana, J. F,…the CarboEurope team. (2009). Importance of methane and nitrous oxide for Europe's terrestrial greenhouse-gas balance. NatureGeoscience, 2, 842–850. https://doi.org/10.1038/ngeo686

Secretaría de Ambiente y Desarrollo Sustentable (2015). 3ª Comunicación Nacional de la República Argentina a la Convención Marco de las Naciones Unidas sobre Cambio Climático. Recuperado de https://unfccc.int/sites/default/files/resource/Argnc3.pdf

Smith, P. (2014). Do grasslands act as a perpetual sink for carbon? Global Change Biology, 20 (9), 2708–2711. https://doi.org/10.1111/gcb.12561

Soriano, A., León, R. J. C., Sala, O. E., Lavado, R. S., Deregibus, V. A., Cauhépé, M. A., … y Lemcoff, J. H. (1991). Río de la Plata grasslands. En Couplan, R. T. (ed.), Natural grasslands: introduction and Western Hemisphere (367–407). Amsterdam, Netherlands: Elsevier.

Soussana, J. T., Loiseau, P., Vuichard, N. Ceschia, E., Balesdent , J. Chevallier,T. y Arrouays, D. (2004). Carbon cycling and sequestration opportunities in temperate grasslands. Soil Use and Management, 20 (2), 219-230.https://doi.org/10.1111/j.1475-2743.2004.tb00362.x

Soussana, J., Allard, V., Pilegaard K., Ambus, P., Amman, C., Campbell, C., …Valentini, R. (2007). Full accounting of the greenhouse gas (CO2, N2O, CH4) budget of nine European grassland sites. Agriculture, Ecosystems & Environment, 121 (1-2), 121-134. https://doi.org/10.1016/j.agee.2006.12.022

Soussana, J., Tallec, T. y Blanfort, V. (2010). Mitigating the greenhouse gas balance of ruminant production systems through carbon sequestration in grasslands. Animal, 4 (3), 334-350.

https://doi.org/10.1017/S1751731109990784

Stackhouse-Lawson, K., Rotz, C., Oltjen, J. y Mitloehner, F. (2012). Carbon footprint and ammonia emissions of California beef production systems. Journal of Animal Science,90(12), 4641-4655. https://doi.org/10.2527/jas.2011-4653

StatSoft, Inc. (2007). STATISTICA (version 8.0) [Software] www.statsoft.com.

Thomas, D.T., Sanderman, J., Eady, S.J., Masters, D.G.y Sanford, P. (2012). Whole Farm Net Greenhouse Gas Abatement from Establishing Kikuyu-Based Perennial Pastures in South-Western Australia. Animals, 2 (3), 316-330. https://doi.org/10.3390/ani2030316

United States Environmental Protection Agency (U.S. EPA). (2006). Global anthropogenic mon-CO2 greenhouse gas emissions: 1990–2020.

Vázquez, P. y Rojas, M. (2006). Zonificación Agro-ecológica del área de Influencia de la EEA Cuenca del Salado. (Publicación Técnica Nº 2). Buenos Aires, Argentina: Ediciones INTA.

Vázquez, P., Rojas, M. y Burges, J. (2008). Caracterización y tendencias de la ganadería bovina en la cuenca del Salado. Veterinaria Argentina 25 (248), 572-584.

Vecchio, M. C., Golluscio, R. A., Rodriguez, A. M. y Taboada, M. A. (2018). Improvement of Saline-Sodic Grassland Soils Properties by Rotational Grazing in Argentina. Rangeland Ecology & Management, 71 (6), 807- 814. https://doi.org/10.1016/j.rama.2018.04.010

Viglizzo, E. F., Ricard, M. F., Taboada, M. A. y Vázquez-Amábile, G. (2019). Reassessing the role of grazing lands in carbon-balance estimations: Meta-analysis and review. Science of the Total Environment, 661, 531–542. https://doi.org/10.1016/j.scitotenv.2019.01.130

Ward, S. E., Smart, S. M., Quirk, H., Tallowin, J. R., Mortimer, S. R., Shiel, R. S., y Bardgett, R. D. (2016). Legacy effects of grassland management on soil carbon to depth. Global change biology, 22 (8), 2929-2938. https://doi.org/10.1111/gcb.13246