Biophysical evaluation of fertility islands in the Arid Chaco (Argentina)

Main Article Content

Marcos Sebastián Karlin
Rubén Coirini
Ariel Ringuelet
Javier Bernasconi Salazar
Amanda Cora
Ana Contreras
María Belén Bravo
Eduardo Buffa

Abstract

Forests degradation in arid and semi-arid lands may conduct to the formation of “fertility islands” due to the accumulation of soil particles, water, nutrients and biomass under trees and shrubs. In the Arid Chaco fertility islands are characterised by the presence of Prosopis flexuosa and Larrea divaricata. The objective was to evaluate biophysical variables in soil, microclimate and the plant response under canopy and in intercanopy. Infiltrability, microtopography, soil bulk density, soil and air moisture and temperature, and light were measured under the canopy, at the limit of the canopy and in the intercanopy. These variables were correlated with the litter and plant frequencies associated with the fertility islands. P. flexuosa canopy and litter understorey tend to maintain more soil moisture compared with the intercanopy, by reducing soil and air temperature and by increasing air moisture. This increases the frequency of Dyksterhuis’ decreaser species. Under L. divaricata the canopy effect is not as effective as that of P. flexuosa and understorey plant response is not significative.

Article Details

How to Cite
Biophysical evaluation of fertility islands in the Arid Chaco (Argentina). (2021). AgriScientia, 38(1), 1-13. https://doi.org/10.31047/1668.298x.v38.n1.30529
Section
Articles

How to Cite

Biophysical evaluation of fertility islands in the Arid Chaco (Argentina). (2021). AgriScientia, 38(1), 1-13. https://doi.org/10.31047/1668.298x.v38.n1.30529

References

Beck, H. E., Zimmermann, N. E., McVicar, T. R., Vergopolan, N., Berg, A. and Wood, E. F. (2018). Present and future Köppen-Geiger climate classification maps at 1-km resolution. Scientific Data, 5, 180214. DOI: https://doi.org/10.1038/sdata.2018.214

Chang, J., Ciais, P., Gasser, T., Smith, P., Herrero, M., Havlík, P. … and Zhu, D. (2021). Climate warming from managed grasslands cancels the cooling effect of carbon sinks in sparsely grazed and natural grasslands. Nature Communications, 12, 118. DOI: https://doi.org/10.1038/s41467-020-20406-7

Di Rienzo, J., Casanoves, F., González, L., Tablada, M., Robledo, C. and Balzarini, M. Infostat (2019 version) [Computer Software]. Córdoba, Argentina: Grupo InfoStat, FCA, Universidad Nacional de Córdoba. URL: http://www.infostat.com.ar

Díaz, R. O. (2003). Efectos de diferentes niveles de cobertura arbórea sobre la producción acumulada, digestibilidad y composición botánica del pastizal natural del Chaco Árido (Argentina). AgriScientia, 20, 61-68. DOI: https://doi.org/10.31047/1668.298x.v20.n0.2832

Díaz, R. O. (2007). Utilización de pastizales naturales. Córdoba, Argentina: Editorial Brujas.

Dohn, J., Dembélé, F., Karembé, M., Moustakas, A., Amévor, K. A. and Hanan, N. P. (2013). Tree effects on grass growth in savannas: competition, facilitation and the stress‐gradient hypothesis. Journal of Ecology, 101, 202-209. DOI: https://doi.org/10.1111/1365-2745.12010

Dyksterhuis, E. J. (1949). Condition and management of range land based on quantitative ecology. Journal of Range Management Archives, 2(3), 104-115.

https://journals.uair.arizona.edu/index.php/jrm/article/viewFile/4330/3941

Gao, X., Liu, Z., Zhao, X., Ling, Q., Huo, G. and Wu, P. (2018). Extreme natural drought enhances interspecific facilitation in semi-arid agroforestry systems. Agriculture, Ecosystems and Environment, 265, 444-453. DOI: https://doi.org/10.1016/j.agee.2018.07.001

Godagnone, R., Irurtia, C., Holzmann, R. and Cuenca, M. (2012). Pérdidas de agua por flujo lateral en un infiltrómetro de anillo simple. In XIX Congreso Latinoamericano de la Ciencia del Suelo - XXIII Congreso Argentino de la Ciencia del Suelo (pp. 1-6).

Mar del Plata, Argentina. Retrieved from: https://inta.gob.ar/sites/default/files/script-tmp-perdida-aguainfiltrometro.pdf

Hierro, J. L., Branch, L. C., Villarreal, D. and Clark, K. L. (2000). Predictive equations for biomass and fuel characteristics of Argentine shrubs. Journal of Range Management, 53(6), 617-621. https://journals.uair.arizona.edu/index.php/jrm/article/viewFile/9566/9178

Karlin, M. S. (2012). Cambios temporales del clima en la subregión del Chaco Árido. Multequina, 21, 3-16. Retrieved from: https://www.redalyc.org/pdf/428/42825278001.pdf

Karlin, M. S., Karlin, U. O., Coirini, R. O., Reati, G. J. and Zapata, R. M. (2013). El Chaco Árido. Córdoba, Argentina: Encuentro Grupo Editor.

Kröpfl, A. I., Cecchi, G. A., Villasuso, N. M. and Distel, R. A. (2002). The influence of Larrea divaricata on soil moisture and on water status and growth of Stipa tenuis

in southern Argentina. Journal of Arid Environments, 52, 29-35. DOI: https://doi.org/10.1006/jare.2002.0992

Kust, G., Andreeva, O. and Cowie, A. (2017). Land Degradation Neutrality: Concept development, practical applications and assessment. Journal of Environmental Management, 195, 16-24. DOI: https://doi.org/10.1016/j.jenvman.2016.10.043

Lei, S. A. (2008). Impacts of gully development on vegetation structure of Larrea tridentata-Ambrosia dumosa shrublands in Southern Nevada. Journal of the Arizona-Nevada Academy of Science, 40(2), 115-120. Retrieved from: https://www.jstor.org/stable/27641782

Magliano, P. N., Giménez, R., Houspanossian, J., Páez, R. A., Nosetto, M. D., Fernández, R. J. and Jobbágy, E. G. (2017). Litter is more effective than forest canopy reducing soil evaporation in Dry Chaco rangelands. Ecohydrology, 10(7), e1879. DOI: https://doi.

org/10.1002/eco.1879

Magliano, P. N., Whitworth‐Hulse, J. I., Florio, E. L., Aguirre, E. C. and Blanco, L. J. (2019). Interception loss, throughfall and stemflow by Larrea divaricata: The role of rainfall characteristics and plant morphological attributes. Ecological Research, 34(6), 753-764. DOI: https://doi.org/10.1111/1440-1703.12036

McNeely, J. A. (2003). Biodiversity in arid regions: values and perceptions. Journal of Arid Environments, 54, 61-70. DOI: https://doi.org/10.1006/jare.2001.0890

National Climatic Data Center (2020). Land-based station data. Retrieved from: https://www.ncdc.noaa.gov/data-access/land-based-station-data

Passera, C. B., Dalmasso, A. D. and Borsetto, O. (1986). Método de Point Quadrat modificado. In Subcomité Asesor del Árido Subtropical Argentino (Eds.), Taller

de arbustos forrajeros para zonas áridas y semiáridas (2ª ed.) (pp. 71-79). Buenos Aires, Argentina: Impresiones Amawald S.A.

Qu, L., Wang, Z., Huang, Y., Zhang, Y., Song, C. and Ma, K. (2018). Effects of plant coverage on shrub fertile islands in the Upper Minjiang River Valley. Science China Life Sciences, 61, 340-347. DOI: https://doi.org/10.1007/s11427-017-9144-9

Raz-Yaseef, N., Yakir, D., Schiller, G. and Cohen, S. (2012). Dynamics of evapotranspiration partitioning in a semiarid forest as affected by temporal rainfall patterns. Agricultural and Forest Meteorology, 157, 77-85. DOI: https://doi.org/10.1016/j.agrformet.2012.01.015

Ridolfi, L., Laio, F. and D’Odorico, P. (2008). Fertility island formation and evolution in dryland ecosystems. Ecology and Society, 13, 5. Retrieved from: https://www.jstor.org/stable/pdf/26267910.pdf?refreqid=excelsior%3Ab3d5fbffe578c4e04d9efc5393c525d4

Rossi, B. E. and Villagra, P. E. (2003). Effects of Prosopis flexuosa on soil properties and the spatial pattern of understorey species in arid Argentina. Journal of Vegetation Science, 14(4), 543-550. DOI: https://doi.org/10.1111/j.1654-1103.2003.tb02181.x

Schade, J. D., Sponseller, R., Collins, S. L. and Stiles, A. (2003). The influence of Prosopis canopies on understorey vegetation: effects of landscape position. Journal of Vegetation Science, 14(5), 743-750. DOI: https://doi.org/10.1111/j.1654-1103.2003.tb02206.x

Sepúlveda, R. B. (1999). El infiltrómetro de cilindro simple como método de cálculo de la conductividad hidráulica de los suelos. Experiencias de campo en ámbitos de montaña mediterránea. Baética, 21, 9-33. Retrieved from: https://www.revistas.uma.es/index.php/baetica/article/view/480/428

Tanga, A. A., Erenso, T. F. and Lemma, B. (2014). Effects of three tree species on microclimate and soil amelioration in the central rift valley of Ethiopia. Journal of Soil Science and Environmental Management, 5(5), 62-71. Retrieved form: https://academicjournals.org/journal/JSSEM/article-full-text-pdf/153C8AF47218

Teague, R. and Kreuter, U. (2020). Managing grazing to restore soil health, ecosystem function, and ecosystem services. Frontiers in Sustainable Food Systems, 4, 1-13. DOI: https://doi.org/10.3389/fsufs.2020.534187

Thompson, D. B., Walker, L. R., Landau, F. H. and Stark, L. R. (2005). The influence of elevation, shrub species, and biological soil crust on fertile islands in the Mojave Desert, USA. Journal of Arid Environments, 61(4), 609-629. DOI: https://doi.org/10.1016/j.jaridenv.2004.09.013

Tongway, D. J. and Ludwig, J. A. (2005). Heterogeneity in arid and semiarid lands. In G. M. Lovett, C. Jones, M. G. Turner, and K. C. Weathers (Eds.) Ecosystem function in heterogeneous landscapes (pp. 189-205). New York, United States: Springer.

Varela, O., Varas, M., Rattalino, D., Crabbè, F. and Ordano, M. (2017). Ameliorative effects of nurse shrubs on soil chemical characteristics are driven by plant size in the

Monte Desert. Arid Land Research and Management, 31(4), 418-430. DOI: https://doi.org/10.1080/15324982.2017.1340359

Votrubova, J., Dohnal, M., Vogel, T., Tesar, M., Jelinkova, V. and Cislerova, M. (2017). Ponded infiltration in a grid of permanent single-ring infiltrometers: Spatial versus temporal variability. Journal of Hydrology and Hydromechanics, 65(3), 244-253. DOI: https://doi.org/10.1515/johh-2017-0015

Ward, D., Trinogga, J., Wiegand, K., du Toit, J., Okubamichael, D., Reinsch, S. and Schleicher, J. (2018). Large shrubs increase soil nutrients in a semi-arid savanna. Geoderma, 310, 153-162. DOI: https://doi.org/10.1016/j.geoderma.2017.09.023

Wickham, H., Chang, W., Henry, L., Lin Pedersen T., Takahashi, K., Wilke, C., ...Dunnington, D. (2016). ggplot2: Elegant Graphics for Data Analysis [Software].

New York, United States: Springer-Verlag New York.

Retrieved from: https://ggplot2.tidyverse.org.

Yolcubal, I., Brusseau, M. L., Artiola, J. F., Wierenga, P. and Wilson, L. G. (2004). Environmental physical properties and processes. In J. Artiola, I. Pepper, and M. Brusseau (Eds.), Environmental monitoring and characterisation (pp. 207-239). San Diego, California, United States: Academic Press.