Protocol for automating climatic data download from the cloud and generating biometeorological indicators for crop epidemiological monitoring

Main Article Content

Pablo Paccioretti
Franca Giannini-Kurina
Franco Suarez
Marcelo Scavuzzo
Mónica Balzarini
Vanina Alemandri
Brenda E. Gómez Montenegro

Abstract

Climate variables data derived from satellite imagery or products available in the cloud have wide coverage in space and time, good accuracy, and are generally freely accessible. However, obtaining and downloading climate variables at different spatial and temporal scales is limited by the lack of standardized computational procedures. The objective of this study was to develop a computational code to facilitate handling satellite images in order to derive climatic variables for a given spatiotemporal domain. The climate data was obtained from ERA5, a Copernicus Climate Change Service product. The protocol includes data download from the Google Earth Engine platform with a code developed in R language. The protocol developed includes statistical preprocessing of climatic data at fortnightly and/or monthly scale. By combining satellite-derived products with agronomic knowledge about a crop, climate data
can be converted into biometeorological variables and used for spatiotemporal monitoring of crops. The process developed was validated by joint data from biometeorological variables at each site of an epidemiological study which has been monitoring two viruses for 15 years. The protocol may be applied to other satellite products using spatial data.

Article Details

How to Cite
Protocol for automating climatic data download from the cloud and generating biometeorological indicators for crop epidemiological monitoring. (2023). AgriScientia, 40(1). https://doi.org/10.31047/1668.298x.v40.n1.39619
Section
Short comunications

How to Cite

Protocol for automating climatic data download from the cloud and generating biometeorological indicators for crop epidemiological monitoring. (2023). AgriScientia, 40(1). https://doi.org/10.31047/1668.298x.v40.n1.39619

References

Aybar, C., Wu, Q., Bautista, L., Yali, R. y Barja, A. (2020). rgee: An R package for interacting with Google Earth Engine. Journal of Open Source Software, 5(51), 2272. https://doi.org/10.21105/joss.02272

Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D. y Moore, R. (2017). Google Earth Engine: Planetary- scale geospatial analysis for everyone. Remote Sensing of Environment, 202, 18–27. https://doi.org/10.1016/j.rse.2017.06.031

Gosling, S. N., Bryce, E. K., Dixon, P. G., Gabriel, K. M. A., Gosling, E. Y., Hanes, J. M., Hondula, D. M., Liang, L., Bustos Mac Lean, P. A., Muthers, S., Nascimento, S. T., Petralli, M., Vanos, J. K. y Wanka, E. R. (2014). A glossary for biometeorology. International Journal of Biometeorology, 58(2), 277–308. https://doi.org/10.1007/s00484-013-0729-9

Hu, Z., Hu, Q., Zhang, C., Chen, X. y Li, Q. (2016). Evaluation of reanalysis, spatially interpolated and satellite remotely sensed precipitation data sets in central Asia. Journal of Geophysical Research: Atmospheres, 121(10), 5648–5663. https://doi.org/10.1002/2016JD024781

Muñoz-Sabater, J., Dutra, E., Agustí-Panareda, A., Albergel, C., Arduini, G., Balsamo, G., Boussetta, S., Choulga, M., Harrigan, S., Hersbach, H., Martens, B., Miralles, D. G., Piles, M., Rodríguez-Fernández, N. J., Zsoter, E., Buontempo, C. y Thépaut, J.-N. (2021). ERA5-Land: a state-of-the-art global reanalysis dataset for land applications. Earth System Science Data, 13(9), 4349–4383. https://doi.org/10.5194/essd-13-4349-2021

Noce, S., Caporaso, L. y Santini, M. (2020). A new global dataset of bioclimatic indicators. Scientific Data, 7(1), 398. https://doi.org/10.1038/s41597-020-00726-5

Pebesma, E. (2022). stars: Spatiotemporal Arrays, Raster and Vector Data Cubes.

R Core Team. (2021). R: A Language and Environment for Statistical Computing (4.1.2). https://www.r-project.org/

Tennekes, M. (2018). tmap : Thematic Maps in R. Journal of Statistical Software, 84(6). https://doi.org/10.18637/jss.v084.i06

Ushey, K., Allaire, J. J. y Tang, Y. (2022). reticulate: Interface to “Python”.

Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York.

Wosula, E. N., Tatineni, S., Wegulo, S. N. y Hein, G. L. (2017). Effect of temperature on wheat streak mosaic disease development in winter wheat. Plant Disease, 101(2), 324–330. https://doi.org/10.1094/PDIS-07-16-1053-RE

Yim, Y. y Kira, T. (1975). Distribution of forest vegetation and climate in the Korean peninsula: I. distribution of some indices of thermal climate. Japanese Journal of Ecology, 25(2), 77–88. https://doi.org/10.18960/seitai.25.2_77