Persistencia de efectos a largo plazo de la fertilización fosfatada y la introducción de leguminosas en pastizales del Uruguay

Contenido principal del artículo

Amabelia del Pino Machado
F. Lezama
F. Pezzani
G. Parodi

Resumen

En el campo natural (CN) de Uruguay la introducción de leguminosas con fertilización fosfatada (CN+LP) evita restricciones nutricionales, pero son poco conocidos sus efectos sobre el suelo y la pastura. Para evaluar estos efectos en el largo plazo se utilizó un experimento previo de introducción de Lotus corniculatus y fertilización fosfatada con un tratamiento testigo de CN (1995-2002). Entre 2013 y 2015 se determinó la producción primaria neta aérea (PPNA), contenido de nutrientes de la planta, composición y diversidad florística. En el suelo se analizó pH, contenido de C orgánico, P disponible y orgánico. En dos gramíneas nativas se  evaluó la colonización micorrícica. El suelo CN+LP presentó mayor contenido de P disponible, pero no hubo diferencias en C orgánico. Aunque la PPNA fue similar, el contenido de P del forraje fue mayor en CN+LP respecto a CN, mientras que la micorrización fue mayor en CN. La composición florística y la diversidad no difirieron. Se concluye que, aunque no se mantuvieron las ventajas productivas de CN+LP en PPNA, hubo una mejora en la calidad del forraje debido a su mayor contenido de P. Sin embargo, no hubo efectos en servicios ecosistémicos claves  como la diversidad de especies.

Detalles del artículo

Cómo citar
Persistencia de efectos a largo plazo de la fertilización fosfatada y la introducción de leguminosas en pastizales del Uruguay. (2021). AgriScientia, 38(1), 99-109. https://doi.org/10.31047/1668.298x.v38.n1.26856
Sección
Comunicaciones
Biografía del autor/a

Amabelia del Pino Machado, Facultad de Agronomía, Universidad de la República Oriental del Uruguay

Profesor Agregado de Fertilidad de Suelos

Cómo citar

Persistencia de efectos a largo plazo de la fertilización fosfatada y la introducción de leguminosas en pastizales del Uruguay. (2021). AgriScientia, 38(1), 99-109. https://doi.org/10.31047/1668.298x.v38.n1.26856

Referencias

Altesor, A. (2011). Servicios ecosistémicos de los pastizales naturales. En A. Altesor, W. Ayala, J. M. Paruelo (Eds.), Bases ecológicas y tecnológicas para el manejo de pastizales (Serie Fondo de Promoción de Tecnología Agropecuaria 26, 221–234). Montevideo,

Uruguay: Instituto Nacional de Investigación Agropecuaria (INIA).

Ayala, W. y Carámbula, M. (2009). El valor agronómico del género Lotus. Montevideo, Uruguay: Instituto Nacional de Investigación Agropecuaria (INIA). Berretta, E. J. (1998). Contenido de minerales en pasturas naturales de basalto. I. Especies nativas. En E. J. Berreta (Ed.), Seminario de Actualización en Tecnologías para Basalto (Serie Técnica 102, 63-73). Tacuarembó, Uruguay: Instituto Nacional de Investigación Agropecuaria (INIA).

Biondini, M. E., Mielke, P. W. y Berry, K. J. (1988). Datadependent permutation techniques for the analysis of ecological data. Vegetatio, 75 (3), 161-168.

Boaming, J. y Bever, J. (2016). Plant preferential allocation and fungal reward decline with soil phosphorus: implications for mycorrhizal mutualism. Ecosphere, 7 (5), 1–11. DOI: https://doi.org/10.1002/ecs2.1256

Bondaruk, V., Lezama, F., del Pino, A. y Piñeiro, G. (2020). Overseeding legumes in natural grasslands: Impacts on root biomass and soil organic matter of commercial

farms. Science of the Total Environment, 743, 140771. DOI: https://doi.org/10.1016/j.scitotenv.2020.140771

Bordoli, J. M. (1998). Fertilización de pasturas de leguminosas y mezclas de gramíneas y leguminosas. Documento presentado en Jornada de Fertilización en cultivos y pasturas. INTA. Concepción del Uruguay, Entre Ríos.

Bray, R. H. y Kurtz, L. T. (1945). Determination of total, organic and available forms of phosphorus in soils. Soil Science, 59, 39-45. DOI : http://dx.doi.org/10.1097/00010694-194501000-00006

Ceulemans, T., Merckx, R., Hens, M. y Honnay, O. (2013). Plant species loss from European seminatural grasslands following nutrient enrichment - is it nitrogen or is it phosphorus? Global Ecology and Biogeography, 22, 73-82. DOI: https://doi.org/10.1111/j.1466-8238.2012.00771.x

Conant, R. T., Paustian, K. y Elliott, E. T. (2001). Grassland management and conversion into grassland: effects on soil carbon. Ecological Applications,

11 (2), 343-355. DOI: https://doi.org/10.1890/1051-0761(2001)011[0343:GMACIG]2.0.CO;2

del Pino A., Rodríguez, T. y Andion, J. (2015). Production improvement through phosphorus fertilization and legume introduction in grazed native pastures

of Uruguay. Journal of Agricultural Science, 154 (2), 347-358. DOI: https://doi.org/10.1017/S002185961500101X

Dubeux, J. C. B., Sollenberger, L. E., Mathews, B. W., Scholeberg, J. M., y Santos, H. Q. (2007). Nutrient cycling in warm climate grasslands. Crop Science, 47 (3), 915-928. DOI: https://doi.org/10.2135/cropsci2006.09.0581

García, S., Pezzani, F., Rodríguez, A. y del Pino, A. (2016). Micorrizas en gramíneas nativas: efecto de la fertilización fosfatada a largo plazo. Agrociencia Uruguay, 20, 7-16

Gurevitch, J. y Padilla, D. K. (2004). Are invasive species a major cause of extinctions? Trends in Ecology and Evolution, 19 (9): 470–474. DOI: https://doi.org/10.1016/j.tree.2004.07.005

Gutiérrez Boem, F. H., Alvarez, C., Cabello, M. J., Fernández, P. L., Bono, A., Prystupa, P. y Taboada, M. A. (2008). Phosphorus retention on soil surface of tilled and no-tilled soils. Soil Science Society of America Journal, 72 (4), 1158-1162. DOI: https://doi.

org/10.2136/sssaj2007.0189

Harpole, W. S., Sullivan, L. L., Lind, E. M., Firn, J., Adler, P. B., Borer, E. T., … y Wragg, P. D. (2016). Addition of multiple limiting resources reduces grassland diversity. Nature, 537 (7618), 93-96. DOI: https://doi.org/10.1038/nature19324

Hernández, J., Otegui, O. y Zamalvide, J. P. (1995). Formas y contenidos de fósforo en algunos suelos del Uruguay. (Boletín de Investigaciones Nº 43, Facultad de Agronomía). Montevideo, Uruguay: Universidad de la República.

Isaac, R. A. y Kerber, J. D. (1971). Atomic Absorption and flame photometry: techniques and uses in soil, plant and water analysis. En: L. M. Walsh (Ed.), Instrumental Methods for Analysis of Soils and Plant Tissues (17-37). Madison, Winsconsin, Estados Unidos: Soil Science Society of America.

Jaurena, M., Lezama, F., Salvo, L., Cardozo, G., Ayala, W., Terra, J. y Nabinger, C. (2016). The dilemma of improving native grasslands by overseeding legumes: production intensification or diversity conservation. Rangeland Ecology and Management, 69, 35-42. DOI: https://doi.org/10.1016/j.rama.2015.10.006

Kahiluoto, H., Ketoja, E., Vestberg, M. y Saarela, I. (2001). Promotion of AM utilization through reduced P fertilization 2. Field studies. Plant and Soil, 231, 65–79. DOI: https://doi.org/10.1023/A:1010366400009

Karn, J. F. (2001). Phosphorus nutrition of grazing cattle: a review. Animal Feed Science and Technology, 89, (3-4), 133-153. DOI: https://doi.org/10.1016/S0377-8401(00)00231-5

Koerselman, W. y Meuleman, A. F. (1996). The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation. Journal of Applied Ecology, 33 (6): 1441-

1450. DOI:https://doi.org/10.2307/2404783

Koske R. y Gemma J. (1989). A modified procedure for staining roots to detect VA mycorrhizas. Mycological Research, 92 (4), 486-488. DOI: https://doi.org/10.1016/S0953-7562(89)80195-9

Lodge, G. M., King, K. L. y Harden, S. (2006). Effects of pasture treatments on detached pasture litter mass, quality, litter loss, decomposition rates, and residence

time in northern New South Wales. Australian Journal of Agricultural Research, 57(10), 1073-1085. DOI: https://doi.org/10.1071/AR05408

Lynch, P. B. (1951). Methods of measuring grassland production. Journal of New Zealand Grasslands, 13, 184- 193. DOI: https://doi.org/10.33584/jnzg.1951.13.957

Mccune, B. y Mefford, M. J. PC-ORD: Multivariate analysis of Ecological Data (Version 4.0 for Windows) [Software]. Gleneden Beach, Oregon, Estados Unidos: MjM Software Design.

Melbourne, B. A., Cornell, H. V., Davies, K. F., Dugaw, C. J., Elmendorf, S., Freestone, … y Yokomizo H. (2007). Invasion in a heterogeneous world: resistance, coexistence or hostile takeover? Ecology Letters, 10, 77- 94. DOI: https://doi.org/10.1111/j.1461-0248.2006.00987.x

Millot J. C., Risso, D. y Methol, R. (1987). Relevamiento de pasturas naturales y mejoramientos extensivos en áreas ganaderas del Uruguay. (Informe técnico

para la Comisión Honoraria del Plan Agropecuario). Montevideo, Uruguay: Comisión Honoraria del Plan Agropecuario.

Morón, A. (1996). El fósforo en los sistemas productivos: dinámica y disponibilidad en el suelo (I). En A. Morón, D. Martino y J. Sawchik, Manejo y Fertilidad de suelos (Serie Técnica 76, 37-44). Montevideo, Uruguay: Instituto Nacional de Investigación Agropecuaria (INIA).

Mueller - Dombois, D. y Ellenberg, H. (1974). Aims and methods of vegetation ecology. Nueva York, Estados Unidos: Wiley & Sons.

Murphy, J. y Riley, J. P. (1962). A modified single solution method for determination of phosphate in natural waters. Analytica Chimica Acta. 27, 31-36. DOI: https://doi.org/10.1016/S0003-2670(00)88444-5

Nelson, D. W. y Sommers, L. E. (1996). Total carbon, organic carbon, and organic matter. En: D. L. Sparks, A. L. Page, P. A. Helmke, R. H. Loeppert, P. N.

Soltanpour, M. A. Tabatabai, ...y M. E. Sumner. (Eds.), Methods of Soil Analysis. Part 3. Chemical Methods. (961-1010). Madison, Wisconsin, Estados Unidos: Soil Science Society of America and American Society of Agronomy.

Nelson, D. W. y Sommers, L. E. (1973). Determination of total nitrogen in plant material. Agronomy Journal, 65, 109-112. DOI: https://doi.org/10.2134agronj1973.000

21962006500010033x

O’Halloran, I. P. (1993). Total and organic phosphorus. En M. R. Carter (Ed.) Soil sampling and methods of analysis. (213-229). Pinawa, Manitoba, Canadá: Canadian Society of Soil Science.

Oehl, F., Laczko, E., Bogenrieder, A., Stahr, K., Bosch, R., Van Der Heijden, M. y Sieverding, E. (2010). Soil type and land use intensity determine the composition

of arbuscular mycorrhizal fungal communities. Soil Biology and Biochemistry, 42 (5), 724–738. DOI: https://doi.org/10.1016/j.soilbio.2010.01.006

Pañella, P. G., Cardozo, G., Cuadro, R., Reyno, R. y Lezama, F. (2020). La fertilización fosforada disminuye la riqueza y aumenta el número de especies exóticas de plantas en pastizales intersembrados con leguminosas. Ecología Austral, 30 (3), 331-496.

Paruelo, J. M., Guerschman, J. P., Piñeiro, G., Jobbagy, E. G., Verón, S. R., Baldi, G. y Baeza, S. (2006). Cambios en el uso de la tierra en Argentina y Uruguay: marcos

conceptuales para su análisis. Agrociencia, 10 (2), 47-61.

Pascale Medina, C., Heredia, O. y Giufré de López Camelo, L. (2000). Distintas fracciones de fósforo en suelos del norte de Entre Ríos. Revista Facultad de

Agronomía, 20, 59-62.

Piñeiro, G., Paruelo, J. M., Jobbágy, E. G., Jackson, R. B. y Oesterheld, M. (2009). Grazing effects on belowground C and N stocks along a network of cattle

exclosures in temperate and subtropical grasslands of South America. Global Biogeochemical Cycles, 23 (2),GB2003. DOI: https://doi.org/10.1029/2007GB003168

Risso, D. F. (1997). Siembras en el tapiz: consideraciones generales y estado actual de la información en la zona de suelos sobre Cristalino. En M. Carámbula, D. Vaz Martins, E. Indarte (Eds.), Pasturas y Producción Animal en Áreas de Ganadería Extensiva. (Serie Técnica 13, 71-82). Montevideo, Uruguay: Instituto Nacional de Investigación Agropecaria (INIA).

Rubio, G., Cabello, M. J., Gutiérrez Boem, F. H. y Munaro, E. (2008). Estimating available soil phosphorus increases after phosphorus additions in Mollisols. Soil

Science Society of America Journal, 72 (6), 1721- 1727. DOI: https://doi.org/10.2136/sssaj2007.0049

Santos-González, J., Finlay, R. y Tehler, A. (2007). Seasonal dynamics of arbuscular mycorrhizal fungal communities in roots in a seminatural grassland. Applied and Environmental Microbiology, 73 (17), 5613–23. DOI: https://doi.org/10.1128/AEM.00262-07

SAS Institute (2009). SAS/STAT 9.2 User’s guide. North Carolina, United States: SAS institute.

Sims, J. T. (2009). A phosphorus sorption index. En J. L. Kovar y G. M. Pierzynski (Eds.), Methods for Phosphorus Analysis for Soils, Sediments, Residuals, and Waters (2a ed., Southern Cooperative Series Bulletin No. 408, 20-21). Blacksburg, Virginia, United

States: Virginia Tech University.

Stewart, C. E., Paustian, K., Conant, R. T., Plante, A. F. y Six, J. (2007). Soil carbon saturation: concept, evidence and evaluation. Biogeochemistry, 86, 19-31.

DOI: https://doi.org/10.1007/s10533-007-9140-0

Tilman, D. (1993). Species richness of experimental productivity gradients: how important is colonization limitation? Ecology, 74 (8), 2179-2191. DOI: https://doi.org/10.2307/1939572