Influencia de los hongos micorrícicos y nitrógeno en el crecimiento y rendimiento del maíz blanco en los Andes ecuatorianos

Contenido principal del artículo

Mirian Capa-Morocho
Erika Macas-Camacho
Vinicio Ruilova
Rodrigo Abad-Guamán

Resumen

El maíz blanco desempeña un papel fundamental en la alimentación de las comunidades andinas de Ecuador, especialmente en las áreas rurales y empobrecidas. Este estudio evaluó el impacto de las micorrizas y la fertilización nitrogenada en el crecimiento y rendimiento del maíz blanco en las condiciones andinas de Loja, Ecuador, usando un diseño aleatorizado con arreglo bifactorial. El primer factor implicó la inoculación de micorrizas, comprendiendo tres dosis: 0 (control), 330 y 660 esporas por planta. El segundo factor se centró en el fertilizante con tres dosis: 0 (control), 40 y 80 kg/ha de nitrógeno. La combinación de micorrizas y fertilización nitrogenada favoreció la altura de las plantas y el diámetro del tallo: los mejores resultados se lograron al aplicar 330 esporas por planta y 80 kg/ha de nitrógeno. La aplicación independiente de nitrógeno y micorrizas incrementó el número de mazorcas por planta, el peso del grano y el rendimiento, alcanzando un máximo de 9,9 t/ha. Notablemente, las micorrizas elevaron significativamente el contenido de nitrógeno del grano en un 7 % en comparación con el control, lo que sugiere su potencial para mejorar la calidad de la dieta y la seguridad alimentaria de la población andina.

Detalles del artículo

Cómo citar
Influencia de los hongos micorrícicos y nitrógeno en el crecimiento y rendimiento del maíz blanco en los Andes ecuatorianos. (2025). AgriScientia, 41(2), 101-112. https://doi.org/10.31047/1668.298x.v41.n2.42721
Sección
Comunicaciones

Cómo citar

Influencia de los hongos micorrícicos y nitrógeno en el crecimiento y rendimiento del maíz blanco en los Andes ecuatorianos. (2025). AgriScientia, 41(2), 101-112. https://doi.org/10.31047/1668.298x.v41.n2.42721

Referencias

Albornoz F. (2016). Crop responses to nitrogen overfertilization: A review. Scientia Horticulturae, 205, 79-83. https://doi.org/10.1016/j.scienta.2016.04.026

Allen, J. W. and Shachar-Hill, Y. (2009). Sulfur transfer through an arbuscular mycorrhiza. Plant physiology, 149(1), 549–560. https://doi.org/10.1104/pp.108.129866

Amanullah, Iqbal, A., Ali, A., Fahad, S., and Parmar, B. (2016). Nitrogen source and rate management improve maize productivity of smallholders under semiarid climates. Frontiers in Plant Science, 7, 1773. https://doi.org/10.3389/fpls.2016.01773

Anas, M., Liao, F., Verma, K. K., Sarwar, M. A., Mahmood, A., Chen, Z. L., Li, Q., Zeng, P., Liu, Y., and Li, Y. (2020). Fate of nitrogen in agriculture and environment: agronomic, eco-physiological and molecular approaches to improve nitrogen use efficiency. Biological Research, 53(1), 1–20. https://doi.org/10.1186/s40659-020-00312-4

Association of Official Agricultural Chemists [AOAC]. (2016). Official methods of analysis of AOAC International (20th ed.) AOAC International.

Asibi, A. E., Chai, Q. A., and Coulter, J. (2019). Mechanisms of Nitrogen Use in Maize. Agronomy, 9(12), 775. https://doi.org/10.3390/agronomy9120775

Bonneau, L., Huguet, S., Wipf, D., Pauly, N., and Truong, H. N. (2013). Combined phosphate and nitrogen limitation generates a nutrient stress transcriptome favorable for arbuscular mycorrhizal symbiosis in Medicago truncatula. New Phytologist, 199(1),188-202. https://doi.org/10.1111/nph.12234

Cao, M. A., Wang, P., Hashem, A., Wirth, S., Abd Allah, E. F., and Wu, Q. S. (2021). Field Inoculation of Arbuscular Mycorrhizal Fungi Improves Fruit Quality and Root Physiological Activity of Citrus. Agriculture, 11(12), 1297. https://doi.org/10.3390/agriculture11121297

Cobb, A., Wilson, G., Goad, C., Bean, S., Kaufman, R., Herald, T., and Wilson, J. (2016). The role of arbuscular mycorrhizal fungi in grain production and nutrition of sorghum genotypes: Enhancing sustainability through plant-microbial partnership. Agriculture, Ecosystems and Environment, 233, 432-440. https://doi.org/10.1016/j.agee.2016.09.024

Coello, W. L., Navarrete, E. C., Arteaga, C. C., Aragone, D. S., Paredes, J. L., Vásquez, G. G., Cabezas, M. G., and Suarez, M. V. (2017). Efectos De La Fertilización Nitrogenada y Fosfatada Sobre Poblaciones De Micorrizas Asociadas Al Cultivo De Cacao. European Scientific Journal, 13(6), 464. https://doi.org/10.19044/esj.2017.v13n6p464

Cheng, Q., Xu, H., Fei, S., Li, Z., and Chen, Z. (2022). Estimation of Maize LAI Using Ensemble Learning and UAV Multispectral Imagery under Different Water and Fertilizer Treatments. Agriculture, 12(8), 1267; https://doi.org/10.3390/agriculture12081267

De Souza, F., Garé, L. M., Garcia, N. F, De Andrade, M. S., Martins, J., Da Silva, P., Meireles, F., De Souza, L., Nogales, A., Rigobelo, E., and Arf, O. (2023). Effect of mycorrhizae on phosphate fertilization efficiency and maize growth under field conditions. Scientific Reports, 13, 3527. https://doi.org/10.1038/s41598-023-30128-7

Dhakal, K., Baral, B., Pokhrel, K. R, Pandit, N. R., Gaihre, Y. K., and Vista, S. P. (2021). Optimizing N Fertilization for Increasing Yield and Profits of Rainfed Maize Grown under Sandy Loam Soil. Nitrogen, 2(3), 359–377. http://dx.doi.org/10.3390/nitrogen2030025

Díaz, A., Espinosa, M., and Ortiz, F. E. (2019). Reducción de la fertilización inorgánica mediante micorriza arbuscular en sorgo. Revista internacional de contaminación ambiental, 35(3), 683-692. https://doi.org/10.20937/rica.2019.35.03.13

Elings, A. (2000). Estimation of leaf area in tropical maize. Agronomy Journal, 92(3), 436-444. https://doi.org/10.2134/agronj2000.923436x

Emck, P., Moreira-Muñoz, A., and Richter, M. (2006). El clima y sus efectos en la vegetación. In: M. Moraes, B. Øllgaard, L. Kvist, F. Borchsenius, H. Balslev, (Eds.), Botánica Económica de los Andes Centrales (11–36). Universidad Mayor de San Andrés.

Erenstein, O., Jaleta, M., Sonder, K., Mottaleb, K., and Prasanna, B. (2022). Global maize production, consumption and trade: trends and R&D implications. Food Security, 14, 1295–1319. https://doi.org/10.1007/s12571-022-01288-7

EUROAGRO (2019). Hoja técnica ORGEVIT®. https://memon.nl/products/orgevit-4-3-2-5/

Food and Agriculture Organization of the United Nations Statistics. (2023). Crops and livestock products. Retrieved from: https://www.fao.org/faostat/en/#data/QCL

Giovannetti, M., Avio, L., Barale, R., Ceccarelli, N., Cristofani, R., Iezzi, A., Mignolli, F., Picciarelli, P., Pinto, B., Reali, D., Sbrana, C., and Scarpato, R. (2012) Nutraceutical value and safety of tomato fruits produced by mycorrhizal plants. British Journal of Nutrition, 107(2), 242–251. https://doi.org/10.1017/S000711451100290X

Goldman, I. (2024). Biodiversity in Plant Breeding, In Editor: S., Scheiner (Ed.), Encyclopedia of Biodiversity (Third Edition) (420-435). Elsevier. https://doi.org/10.1016/B978-0-12-822562-2.00024-4

Ijdo, M., Cranenbrouck, S., and Declerck, S. (2011). Methods for large-scale production of AM fungi: Past, present, and future. Mycorrhiza, 21, 1–16. https://doi.org/10.1007/s00572-010-0337-z

Instituto Nacional de Investigaciones Agropecuarias [INIAP] (2013). INIAP 103 “Mishqui Sara” Nueva variedad de maíz blanco harinoso para consumo humano. Estación Experimental del Austro. https://repositorio.iniap.gob.ec/bitstream/41000/2342/1/FT3.pdf

Karaca, C. and Büyüktaş, D. (2021). Variation of the Leaf Area Index of Some Vegetables Commonly Grown in Greenhouse Conditions with Cultural Practices. Horticultural Studies, 38(2), 56-61 http://doi.org/10.16882/HortiS.902525

Kheyri, Z., Moghaddam, M., and Farhadi, N. (2022). Inoculation efficiency of different mycorrhizal species on growth, nutrient uptake, and antioxidant capacity of Calendula officinalis L.: A comparative study. Journal of Soil Science and Plant Nutrition, 22(1), 1160-1172. http://doi.org/10.1007/s42729-021-00721-8

Lekberg, Y. and Koide, R. T. (2005). Is plant performance limited by abundance of arbuscular mycorrhizal fungi? A meta-analysis of studies published between 1988 and 2003. New Phytologist, 168(1), 189–204. https://doi.org/10.1111/j.1469-8137.2005.01490.x

Liu, S., Cui, S., Zhang, X., Wang, Y., Mi, G., and Gao, Q. (2020). Synergistic Regulation of Nitrogen and Sulfur on Redox Balance of Maize Leaves and Amino Acids Balance of Grains. Frontiers in plant science, 11, 576718. https://doi.org/10.3389/fpls.2020.576718

Liu, S., Cui, S., Ying, F., Nasar, J., Wang, Y., and Gao, Q. (2021). Simultaneous improvement of protein concentration and amino acid balance in maize grains by coordination application of nitrogen and sulfur. Journal of Cereal Science, 99, 103189. https://doi.org/10.1016/j.jcs.2021.103189

Loján, P., Senés-Guerrero, C., Suárez, J., Kromann, P., Schüßler, A., and Declerck, S. (2017). Potato field-inoculation in Ecuador with Rhizophagus irregularis: no impact on growth performance and associated arbuscular mycorrhizal fungal communities. Symbiosis, 73, 45-56. https://doi.org/10.1007/s13199-016-0471-2

Lucas, F. T., Borges, B. M., and Coutinho, E. L. (2019). Nitrogen fertilizer management for maize production under tropical climate. Agronomy Journal, 111(4), 2031–2037. https://doi.org/10.2134/agronj2018.10.0665

Luginbuehl, L. H. and Oldroyd, G. E. (2017). Understanding the Arbuscule at the Heart of Endomycorrhizal Symbioses in Plants. Current Biology, 27(17), R952-R963. https://doi.org/10.1016/j.cub.2017.06.042

Lykhovyd, P., Ushkarenko, V. O., Lavrenko, S. O., Lavrenko, N., Zhuikov, O. H., Mrynskyi, I., and Didenko, N. O. (2019). Leaf area index of sweet corn (Zea mays ssp. saccharata L.) crops depending on cultivation technology in the drip-irrigated conditions of the south of Ukraine. Modern Phytomorphology, 13, 1-4.: https://www.phytomorphology.com/articles/Leaf-area-index-of-sweet-corn-zea-mays-ssp-saccharata-l-crops-depending-on-cultivation-technology-in-the-dripirrigated-conditions-.pdf

Maathuis, F. J. (2009). Physiological functions of mineral macronutrients, Current Opinion in Plant Biology, 12(3), 250–258. https://doi.org/10.1016/j.pbi.2009.04.003

Mălinaş, A., Vidican, R., Rotar, I., Mălinaş, C., Moldovan, C. M., and Proorocu, M. (2022). Current status and future prospective for nitrogen use efficiency in wheat (Triticum aestivum L.). Plants, 11(2), 217. https://doi.org/10.3390/plants11020217

Mathur, S., Sharma, M. P., and Jajoo, A. (2018). Improved photosynthetic efficacy of maize (Zea mays) plants with arbuscular mycorrhizal fungi (AMF) under high temperature stress. Journal of Photochemistry and Photobiology B: Biology, 180, 149–154. https://doi.org/10.1016/j.jphotobiol.2018.02.002

Mihai, R. A., Melo, E. J, Terán, V. A., Espinoza, I. A., Pinto, E. A., and Catana, R. D. (2023). The Panoramic View of Ecuadorian Soil Nutrients (Deficit/Toxicity) from Different Climatic Regions and their Possible Influence on the Metabolism of Important Crops. Toxics, 11(2), 123. https://doi.org/10.3390/toxics11020123

Mobasser, H., Moradgholi, A., Mehraban, A., and Koohkan, S. (2012). Investigation of mycorrhizal effect on agronomic traits and protein percent of corn varieties in Sistan. International Journal of AgriScience, 2, 108-119.

Mohkum Hammad, H., Chawla, M. S., Jawad, R., Alhuqail, A., Bakhat, H. F., Farhad, W., Khan, F., Mubeen, M., Shah, N., Liu, K., Harrison, M. T., Saud, S., and Fahad, S. (2022). Evaluating the Impact of Nitrogen Application on Growth and Productivity of Maize Under Control Conditions. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.885479

Nanjareddy, K., Blanco, L., Arthikala, M. K., Affantrange, X. A., Sánchez, F., and Lara, M. (2014). Nitrate regulates rhizobial and mycorrhizal symbiosis in common bean (Phaseolus vulgaris L.). Journal of Integrative Plant Biology, 56(3), 281-298. https://doi.org/10.1111/jipb.12156

Ochoa, P., Fries, A., Mejía, D., Burneo, JI., Ruíz-Sinoga, J. D., and Cerdà, A. (2016). Effects of climate, land cover and topography on soil erosion risk in a semiarid basin of the Andes, CATENA, 140, 31-42. https://doi.org/10.1016/j.catena.2016.01.011

Pan, S., Wang, Y., Qiu, Y. P., Chen, D., Zhang, L., Ye, C., Guo, H., Xu, G. H., Zhang, Y., Bai, Y., Zhu, W., Chen, A., and Hu, S. (2020). Nitrogen-induced acidification, not N-nutrient, dominates suppressive N effects on arbuscular mycorrhizal fungi. Global Change Biology, 26(11), 6568–6580. https://doi.org/10.1111/gcb.15311

Prabhu, G., Muthusamy, S. K., Bagavathiannan, M., Mowrer, J., Jagannadham, P., Maity, A., Halli, H. M., Sujayananad, G. K., Vadivel R., Das, T. K., Raj, R., Pooniya, V., Babu, S., Singh Rathore, S., Muralikrishnan, L., and Tiwari, G. (2023). Nitrogen use efficiency—a key to enhance crop productivity under a changing climate. Frontiers in Plant Science, 14. https://doi.org/10.3389/fpls.2023.1121073

Robertson, G. and Groffman, P. (2015). Nitrogen transformations. In: E. A. Paul (Ed.), Soil Microbiology, Ecology and Biochemistry (4th ed.) (421-446). Academic Press. https://doi.org/10.1016/B978-0-12-415955-6.00014-1

Rubel, F. and Kottek, M. (2010). Observed and projected climate shifts 1901-2100 depicted by world maps of the Köppen-Geiger climate classification. Meteorologische Zeitschrift, 19(2), 135-141. https://doi.org/10.1127/0941-2948/2010/0430

Rui, W., Mao, Z., and Li, Z. (2022). The Roles of Phosphorus and Nitrogen Nutrient Transporters in the Arbuscular Mycorrhizal Symbiosis. International Journal of Molecular Sciences, 23(19), 11027. https://doi.org/10.3390/ijms231911027

SAS Institute (2021). SAS OnDemand for Academics. SAS Institute Inc.

Sistema de Información Pública Agropecuaria del Ecuador [SIPA] (2023). Información Productiva territorial. https://sipa.agricultura.gob.ec/index.php/cifras-agroproductivas

Sisalima-Ortega, L., Ruilova, V., and Capa-Morocho, M. (2023). Efecto de inoculación micorrízica en la etapa productiva del cacao nacional (Theobroma cacao L.) en la Amazonía ecuatoriana. CEDAMAZ, 13(1), 17-24. https://doi.org/10.54753/cedamaz.v13i1.1742

Sotomayor, A., Gonzáles, A., Jin Cho, K., Villavicencio, A., Jackson, T., and Viera, W. (2019). Effect of the application of microorganisms on the nutrient absorption in avocado (Persea americana Mill.) seedlings. Journal of the Korean Society of International Agriculture, 31(1), 17-24. https://doi.org/10.12719/KSIA.2019.31.1.17

Tabak, M., Lepiarczyk, A., Filipek-Mazur, B., and Lisowska, A. (2020). Efficiency of Nitrogen Fertilization of Winter Wheat Depending on Sulfur Fertilization. Agronomy, 10(9), 1304. http://dx.doi.org/10.3390/agronomy10091304

Tawaraya, K., Hirose, R., and Wagatsuma, T. (2012). Inoculation of arbuscular mycorrhizal fungi can substantially reduce phosphate fertilizer application to Allium fistulosum L. and achieve marketable yield under field condition. Biology and Fertility of Soils, 48, 839–843. https://doi.org/10.1007/s00374-012-0669-2

Trejo, D., Sangabriel-Conde, W., Gavito-Pardo, M. E., and Banuelos, J. (2021). Mycorrhizal Inoculation and Chemical Fertilizer Interactions in Pineapple under Field Conditions. Agriculture, 11(10), 934. https://doi.org/10.3390/agriculture11100934

Wang, S. S., Chen, A. Q., Xie, K., Yang, X. F., Luo, Z. Z., Chen, J. D., Zeng, D. C., Ren, Y. H., Yang, C. F., Wang, L. X., Feng, H., López-Arredondo, D., Herrera-Estrella, L., and Xu, G. (2020). Functional analysis of the OsNPF4.5 nitrate transporter reveals a conserved mycorrhizal pathway of nitrogen acquisition in plants. Proceedings of the National Academy of Sciences, 117(28), 16649–16659. https://doi.org/10.1073/pnas.2000926117

Wang, H., Cui, S., Fu, J., Gong, H., and Liu, S. (2023). Sulfur Application Improves the Nutritional Quality of Maize by Regulating the Amino Acid Balance of Grains. Agronomy, 13, 2912.

Wang, Y., Liu, H., Shen, Z., Miao, Y., Wang, J., Jiang, X., Shen, Q., and Li, R. (2022). Richness and antagonistic effects co-affect plant growth promotion by synthetic microbial consortia. Applied Soil Ecology, 170, 104300. https://doi.org/10.1016/j.apsoil.2021.104300

Wu, S., Shi, Z., Chen, X., Gao, J., and Wang, X. (2022). Arbuscular mycorrhizal fungi increase crop yields by improving biomass under rainfed condition: a meta-analysis. PeerJ, 10: e12861. https://doi.org/10.7717/peerj.12861

Yánez, G. (2013). INIAP-103: “Mishqui Sara”. Quito, Ecuador: INIAP, Estación Experimental Santa Catalina, Programa de Maíz. https://repositorio.iniap.gob.ec/bitstream/41000/2413/1/iniapsc337.pdf

Zhang, S., Nie, Y., Fan, X., Wei, W., Chen, H., Xie, X., and Tang, M. (2023). A transcriptional activator from Rhizophagus irregularis regulates phosphate uptake and homeostasis in AM symbiosis during phosphorous starvation. Frontiers in Microbiology, 13. https://doi.org/10.3389/fmicb.2022.1114089

Zhang, X., Wang, L., Ma, F., Yang, J., and Su, M. (2017). Effects of arbuscular mycorrhizal fungi inoculation on carbon and nitrogen distribution and grain yield and nutritional quality in rice (Oryza sativa L.). Journal of the Science of Food and Agriculture, 97(9), 2919-2925. https://doi.org/10.1002/jsfa.8129

Zhu, X. C., Song, F. B., and Xu, H. W. (2010). Effects of arbuscular mycorrhizal fungi on photosynthetic characteristics of maize under low temperature stress. Ying Yong Sheng Tai Xue Bao, 21(2), 470-475.