Importancia del análisis de glicoalcaloides (α-solanina y α-chaconina) por consumo de papa en los habitantes prehispánicos de América
DOI:
https://doi.org/10.31048/1852.4826.v17.n2.44433Palabras clave:
Enfermedades, Alimentos, Historia, CultivoResumen
En todo el continente americano, las sociedades precolombinas mostraron prácticas alimentarias diversas; no obstante, diferentes países compartían alimentos comunes. Un ejemplo es la papa, un tubérculo que ha sido un alimento básico en la dieta desde la antigüedad. Las papas contienen glicoalcaloides, una clase de alcaloides que, cuando se ingieren en concentraciones elevadas, pueden plantear riesgos de toxicidad tanto para los seres humanos como para los animales. El objetivo de este estudio es ofrecer una guía sobre glicoalcaloides presentes en papas, y recomendar que se realice investigación de estos compuestos en materiales arqueológicos que fueron destinados para alimentos en todos los países de América. Esta sugerencia surge de la ausencia de estudios de esta naturaleza, particularmente cuando los hallazgos arqueológicos incluyen gránulos de almidón de papa. Se revisaron varias bases de datos para encontrar información histórica sobre la papa e indicar los principales aspectos de la química de los glicoalcaloides relacionados con el tubérculo. Los principales hallazgos indican la importancia que representó la papa en las culturas precolombinas de América, especialmente en las regiones situadas a lo largo de la cordillera de los Andes. La investigación de la composición nutricional reveló que en el tubérculo se pueden encontrar dos glicoalcaloides predominantes: α-solanina y α-chaconina. Se realizó un análisis bibliográfico de estos compuestos tóxicos para comprender su importancia, propiedades químicas, funciones botánicas, metabolismo en el ser humano junto con los posibles problemas de salud, umbrales de toxicidad y las diversas técnicas analíticas disponibles para su detección y cuantificación. La identificación de estas moléculas adquiere importancia en contextos arqueológicos, ya que su presencia puede dar lugar a investigaciones sobre posibles enfermedades prevalentes en la población de la época.
Descargas
Referencias
Aziz, A., Randhawa, M., Butt, M., Asghar, A., Yasin, M., & Shibamoto, T. (2012). Glycoalkaloids (α-chaconine and α-solanine) contents of selected Pakistani potato cultivars and their dietary intake assessment. Journal of Food Science, 77(3), 58–61. https://doi.org/10.1111/J.1750-3841.2011.02582.X
Barceloux, D. (2009). Potatoes, tomatoes, and solanine toxicity (Solanum tuberosum L., Solanum lycopersicum L.). Disease-a-Month : DM, 55(6), 391–402. https://doi.org/10.1016/J.DISAMONTH.2009.03.009
Bermejo, A., Pereira, S., Cintra, J., & Morales, G. (2014). Determinación de parámetros químico- físico de las tinturas al 20% obtenidas de las hojas, tallos y frutos de Melia azedarach L (Pursiana). Revista Habanera de Ciencias Médicas, 13(5), 670–680.
Ciofalo, A., Keegan, W., Pateman, M., Pagán-Jiménez, J., & Hofman, C. (2018). Determining precolonial botanical foodways: starch recovery and analysis, Long Island, The Bahamas. Journal of Archaeological Science: Reports, 21, 305–317. https://doi.org/10.1016/J.JASREP.2018.07.022
Crews, C. (2014). Natural Toxicants: Alkaloids. Encyclopedia of Food Safety, 2, 251–260. https://doi.org/10.1016/B978-0-12-378612-8.00175-X
Dey, P., Kundu, A., Chakraborty, H., Kar, B., Choi, W., Lee, B., Bhakta, T., Atanasov, A., & Kim, H. (2019). Therapeutic value of steroidal alkaloids in cancer: Current trends and future perspectives. International Journal of Cancer, 145(7), 1731–1744. https://doi.org/10.1002/IJC.31965
Friedman, M., & Rasooly, R. (2013). Review of the Inhibition of Biological Activities of Food-Related Selected Toxins by Natural Compounds. Toxins, 5, 743–775. https://doi.org/10.3390/toxins5040743
García-Granero, J., Suryanarayan, A., Cubas, M., Craig, O., Cárdenas, M., Ajithprasad, P., & Madella, M. (2022). Integrating Lipid and Starch Grain Analyses From Pottery Vessels to Explore Prehistoric Foodways in Northern Gujarat, India. Frontiers in Ecology and Evolution, 10, 840199. https://doi.org/10.3389/FEVO.2022.840199/BIBTEX
Gavrilenko, T., Chukhina, I., Antonova, O., Krylova, E., Shipilina, L., Oskina, N., & Kostina, L. (2023). Comparative Analysis of the Genetic Diversity of Chilean Cultivated Potato Based on a Molecular Study of Authentic Herbarium Specimens and Present-Day Gene Bank Accessions. Plants, 12(1). https://doi.org/10.3390/PLANTS12010174/S1
Ginzberg, I., Tokuhisa, J., & Veilleux, R. (2008). Potato Steroidal Glycoalkaloids: Biosynthesis and Genetic Manipulation. Potato Research 52:1, 52(1), 1–15. https://doi.org/10.1007/S11540-008-9103-4
Haddadin, M., Humeid, M., Qaroot, F., & Robinson, R. (2001). Effect of exposure to light on the solanine content of two varieties of potato (Solanum tuberosum) popular in Jordan. Food Chemistry, 73(2), 205–208. https://doi.org/10.1016/S0308-8146(00)00279-X
Idrovo, J. (2002). El formativo en la Sierra Ecuatoriana. In P. Ledergerber -Crespo (Ed.), Formativo en la Sierra Ecuatoriana Jaime Idrovo Urigüen (3era., pp. 114–123). Abya-Yala.
Izawa, K., Amino, Y., Kohmura, M., Ueda, Y., & Kuroda, M. (2010). Human–Environment Interactions – Taste. Comprehensive Natural Products II: Chemistry and Biology, 4, 631–671. https://doi.org/10.1016/B978-008045382-8.00108-8
Jorgensen, K., Garcia, O., Kiyamu, M., Brutsaert, T., & Bigham, A. (2023). Genetic adaptations to potato starch digestion in the Peruvian Andes. American Journal of Biological Anthropology, 180(1), 162–172. https://doi.org/10.1002/AJPA.24656
Kuete, V. (2014). Health Effects of Alkaloids from African Medicinal Plants. Toxicological Survey of African Medicinal Plants, 611–633. https://doi.org/10.1016/B978-0-12-800018-2.00021-2
Kurek, J. (2019). Introductory Chapter: Alkaloids - Their Importance in Nature and for Human Life. Alkaloids - Their Importance in Nature and Human Life. https://doi.org/10.5772/INTECHOPEN.85400
Liu, W., Zhang, N., Li, B., Fan, S., Zhao, R., Li, L. P., Wu, G. H., & Zhao, Y. (2014). Determination of α-chaconine and α-solanine in commercial potato crisps by QuEChERS extraction and UPLC-MS/MS. Chemical Papers, 68(11), 1498–1504. https://doi.org/10.2478/S11696-014-0617-8/MACHINEREADABLECITATION/RIS
Louderback, L., & Pavlik, B. (2017). Starch granule evidence for the earliest potato use in North America. Proceedings of the National Academy of Sciences of the United States of America, 114(29), 7606–7610. https://doi.org/10.1073/PNAS.1705540114/SUPPL_FILE/PNAS.201705540SI.PDF
Martín, I. (2011). Determinación de glicoalcaloides: α-solanina y α-chaconina en patata mediante cromatografía de líquidos de ultra presión acoplada a espectrometría de masas de triple cuadrupolo. [Universidad de Almería]. http://hdl.handle.net/10835/491
McGehee, D., Krasowski, M., Fung, D., Wilson, B., Gronert, G., & Moss, J. (2000). Cholinesterase inhibition by potato glycoalkaloids slows mivacurium metabolism. Anesthesiology, 93(2), 510–519. https://doi.org/10.1097/00000542-200008000-00031
McWilliams, M., Blankemeyer, J., & Friedman, M. (2000). The folic acid analogue methotrexate protects frog embryo cell membranes against damage by the potato glycoalkaloid alpha-chaconine. Food and Chemical Toxicology : An International Journal Published for the British Industrial Biological Research Association, 38(10), 853–859. https://doi.org/10.1016/S0278-6915(00)00090-9
Melton, M., Biwer, M., & Panjarjian, R. (2020). Differentiating Chuño blanco and Chuño negro in archaeological samples based on starch metrics and morphological attributes. Journal of Archaeological Science: Reports, 34, 102650. https://doi.org/10.1016/J.JASREP.2020.102650
Mensinga, T., Sips, A., Rompelberg, C., Van Twillert, K., Meulenbelt, J., Van Den Top, H., & Van Egmond, H. (2005). Potato glycoalkaloids and adverse effects in humans: an ascending dose study. Regulatory Toxicology and Pharmacology, 41(1), 66–72. https://doi.org/10.1016/J.YRTPH.2004.09.004
Mesia-Montenegro, C. (2014). El periodo formativo en los andes septentrionales y sus relaciones con los andes centrales. Arqueología y Sociedad, 0(27), 111–130.
Molestina, M. (2006). El pensamiento simbólico de los habitantes de La Florida (Quito-Ecuador). Bulletin de l’Institut Français d’études Andines, 35 (3), 377–395. https://doi.org/10.4000/bifea.3931
Ni, W., Tian, T., Zhang, L., Li, Z., Wang, L., & Ren, A. (2018). Maternal periconceptional consumption of sprouted potato and risks of neural tube defects and orofacial clefts. Nutrition Journal 2018 17:1, 17(1), 1–8. https://doi.org/10.1186/S12937-018-0420-4
Ordoñez-Araque, R., Ramos-Guerrero, L., Vargas-Jentzsch, P., Romero-Bastidas, M., Rodríguez-Herrera, N., Vallejo-Holguín, R., Fuentes-Gualotuña, C., & Ruales, J. (2024). Fatty Acids and Starch Identification within Minute Archaeological Fragments: Qualitative Investigation for Assessing Feasibility. Foods 13(7), 1090. https://doi.org/10.3390/FOODS13071090
Ordoñez-Araque, R., Ruales, J., Vargas-Jentzsch, P., Ramos-Guerrero, L., Romero-Bastidas, M., Montalvo-Puente, C., & Serrano-Ayala, S. (2022). Pre-Hispanic Periods and Diet Analysis of the Inhabitants of the Quito Plateau (Ecuador): A Review. Heritage, 5(4), 3446–3462. https://doi.org/10.3390/HERITAGE5040177
Pearsall, D. (2003). Plant food resources of the Ecuadorian Formative: an overview and comparison to the Central Andes. In Raymond & L. Burger (Eds.), Archaeology of Formative Ecuador (pp. 213–257). Dumbarton Oaks Research Library and Collection.
Pearsall, D. (2008). Plant Domestication and the Shift to Agriculture in the Andes. In The Handbook of South American Archaeology (pp. 105–120). Springer, New York, NY. https://doi.org/10.1007/978-0-387-74907-5_7
Prasad, A., Patel, P., Pandey, S., Niranjan, A., & Misra, P. (2020). Growth and alkaloid production along with expression profiles of biosynthetic pathway genes in two contrasting morphotypes of prickly and prickleless Solanum viarum Dunal. Protoplasma, 257(2), 561–572. https://doi.org/10.1007/S00709-019-01446-3/METRICS
Romanucci, V., Pisanti, A., Di Fabio, G., Davinelli, S., Scapagnini, G., Guaragna, A., & Zarrelli, A. (2016). Toxin levels in different variety of potatoes: Alarming contents of α-chaconine. Phytochemistry Letters, 16, 103–107. https://doi.org/10.1016/J.PHYTOL.2016.03.013
Rondon, S., Carrillo, C., Cuesta, H., Navarro, P., & Acuña, I. (2022). Latin America potato production: pests and foes. In Insect Pests of Potato: Global Perspectives on Biology and Management (pp. 317–330). Academic Press. https://doi.org/10.1016/B978-0-12-821237-0.00019-6
Rumold, C., & Aldenderfer, M. (2016). Late Archaic-Early Formative period microbotanical evidence for potato at Jiskairumoko in the Titicaca Basin of southern Peru. Proceedings of the National Academy of Sciences of the United States of America, 113(48), 13672–13677. https://doi.org/10.1073/PNAS.1604265113/SUPPL_FILE/PNAS.201604265SI.PDF
Schrenk, D., Bignami, M., Bodin, L., Chipman, J. K., Mazo, J. del, Hogstrand, C., Hoogenboom, L. (Ron), Leblanc, J., Nebbia, C. S., Nielsen, E., Ntzani, E., Petersen, A., Sand, S., Schwerdtle, T., Vleminckx, C., Wallace, H., Brimer, L., Cottrill, B., Dusemund, B., … Grasl-Kraupp, B. (2020). Risk assessment of glycoalkaloids in feed and food, in particular in potatoes and potato-derived products. EFSA Journal, 18(8), 6222. https://doi.org/10.2903/J.EFSA.2020.6222
Sharma, S., Jaiswal, A., & Jaiswal, S. (2020). Chapter 21 - Potato. Nutritional Composition and Antioxidant Properties of Fruits and Vegetables, 339–347. https://doi.org/10.1016/B978-0-12-812780-3.00021-0
Shoji, K., Vásquez S., V. F., & Rosales T., T. E. (2023). Starch grains on human teeth as evidence for 4000 BCE potato consumption at the Cruz Verde site, northern coast of Peru. Journal of Archaeological Science: Reports, 51, 104152. https://doi.org/10.1016/J.JASREP.2023.104152
Simões, J. (2008). Evenenamento por glicoalcalóides da batata (solanum tuberosum) em bovinos. Veterinaria, 1–6.
Song, J., Wang, X., Wang, Y., Zhang, Y., & Yu, Y. J. (2020). High-throughput identification of volatile and semi-volatile organic compounds in archaeological samples by gas chromatography–mass spectrometry combined with advanced chemometrics methodology. Microchemical Journal, 158, 105289. https://doi.org/10.1016/J.MICROC.2020.105289
Stoessel, L., Martínez, G., & Constenla, D. (2015). Preliminary analysis of fatty acids recovered from archaeological pottery of the lower course of the Colorado River (North-eastern Patagonia): Contributions to the hunter-gatherers subsistence patterns. Magallania, 43(1), 231–249. https://doi.org/10.4067/s0718-22442015000100013
Urugo, M., & Tringo, T. (2023). Naturally Occurring Plant Food Toxicants and the Role of Food Processing Methods in Their Detoxification. International Journal of Food Science, 2023. https://doi.org/10.1155/2023/9947841
Vélez-Terreros, P., & Pilaquinga, F. (2016). Extracción e identificación de la solanina obtenida del fruto de la berenjena (Solanum melongena L.). InfoANALÍTICA, 4(1), 21–32. https://doi.org/10.26807/IA.V4I1.8
Villalba, M. (1988). Cotocollao: una aldea formativa del valle de Quito : Vol. Serie Monográfica 2 (Museo del Banco Central del Ecuador, Ed.). Miscelánea antropológica Ecuatoriana.
Yamashoji, S., & Matsuda, T. (2013). Synergistic cytotoxicity induced by α-solanine and α-chaconine. Food Chemistry, 141(2), 669–674. https://doi.org/10.1016/J.FOODCHEM.2013.03.104
Zarins, R., & Kruma, Z. (2017). Glycoalkaloids in potatoes: a review. https://doi.org/10.22616/FOODBALT.2017.002
Zarrillo, S., Gaikwad, N., Lanaud, C., Powis, T., Viot, C., Lesur, I., Fouet, O., Argout, X., Guichoux, E., Salin, F., Solorzano, R. L., Bouchez, O., Vignes, H., Severts, P., Hurtado, J., Yepez, A., Grivetti, L., Blake, M., & Valdez, F. (2018). The use and domestication of Theobroma cacao during the mid-Holocene in the upper Amazon. Nature Ecology & Evolution, 2(12), 1879–1888. https://doi.org/10.1038/s41559-018-0697-x
Zeidler, J. (2008). The Ecuadorian Formative. The Handbook of South American Archaeology, 459–488. https://doi.org/10.1007/978-0-387-74907-5_24
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2024 Roberto Ordoñez, Carlos Montalvo-Puente, Martha Romero-Bastidas, Luis Ramos-Guerrero, Paul Vargas-Jentzsch
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Aquellos autores/as que tengan publicaciones con esta revista, aceptan los términos siguientes:
- Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cual estará simultáneamente sujeto a la Licencia de reconocimiento de Creative Commons que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación en esta revista.
- Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la publicación inicial en esta revista.
- Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en archivos telemáticos institucionales o en su página web) antes y durante el proceso de envío, lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto).