Importance of glycoalkaloids analysis (α-solanine and α-chaconine) derived from potato consumption in pre-Hispanic inhabitants of the Americas
DOI:
https://doi.org/10.31048/1852.4826.v17.n2.44433Keywords:
Diseases, Food, History, CultivationAbstract
In the pre-Columbian societies of the Americas, a wide range of food practices was observed. However, several countries shared certain staple foods, such as the potato, which has held a significant place in the diet since ancient times. It is important to note that potatoes contain glycoalkaloids, a class of alkaloids with potential toxicity risks when consumed in high concentrations by both humans and animals. This study aims to offer guidance on the presence of glycoalkaloids in potatoes and proposes further research into these compounds in archaeological remains that were utilized as food across all American countries. This recommendation stems from the dearth of studies on this subject, particularly in cases where archaeological discoveries include potato starch granules. In this study, various databases were examined to discover historical insights into the potato and to elucidate the primary aspects of glycoalkaloid chemistry associated with this tuber. The findings underscore the crucial role played by the potato in pre-Columbian cultures of the Americas, particularly in the regions situated along the Andes mountain range. Furthermore, the analysis of its nutritional composition unveiled the prevalence of two key glycoalkaloids in the tuber: α-solanine and α-chaconine. In this research, a comprehensive review of the chemical properties, botanical functions, human metabolism, potential health effects, toxicity thresholds, and available analytical techniques for the detection and quantification of toxic compounds was conducted. The significance of identifying these molecules in archaeological contexts was highlighted, as their presence may prompt investigations into prevalent diseases among historical populations.
Downloads
References
Aziz, A., Randhawa, M., Butt, M., Asghar, A., Yasin, M., & Shibamoto, T. (2012). Glycoalkaloids (α-chaconine and α-solanine) contents of selected Pakistani potato cultivars and their dietary intake assessment. Journal of Food Science, 77(3), 58–61. https://doi.org/10.1111/J.1750-3841.2011.02582.X
Barceloux, D. (2009). Potatoes, tomatoes, and solanine toxicity (Solanum tuberosum L., Solanum lycopersicum L.). Disease-a-Month : DM, 55(6), 391–402. https://doi.org/10.1016/J.DISAMONTH.2009.03.009
Bermejo, A., Pereira, S., Cintra, J., & Morales, G. (2014). Determinación de parámetros químico- físico de las tinturas al 20% obtenidas de las hojas, tallos y frutos de Melia azedarach L (Pursiana). Revista Habanera de Ciencias Médicas, 13(5), 670–680.
Ciofalo, A., Keegan, W., Pateman, M., Pagán-Jiménez, J., & Hofman, C. (2018). Determining precolonial botanical foodways: starch recovery and analysis, Long Island, The Bahamas. Journal of Archaeological Science: Reports, 21, 305–317. https://doi.org/10.1016/J.JASREP.2018.07.022
Crews, C. (2014). Natural Toxicants: Alkaloids. Encyclopedia of Food Safety, 2, 251–260. https://doi.org/10.1016/B978-0-12-378612-8.00175-X
Dey, P., Kundu, A., Chakraborty, H., Kar, B., Choi, W., Lee, B., Bhakta, T., Atanasov, A., & Kim, H. (2019). Therapeutic value of steroidal alkaloids in cancer: Current trends and future perspectives. International Journal of Cancer, 145(7), 1731–1744. https://doi.org/10.1002/IJC.31965
Friedman, M., & Rasooly, R. (2013). Review of the Inhibition of Biological Activities of Food-Related Selected Toxins by Natural Compounds. Toxins, 5, 743–775. https://doi.org/10.3390/toxins5040743
García-Granero, J., Suryanarayan, A., Cubas, M., Craig, O., Cárdenas, M., Ajithprasad, P., & Madella, M. (2022). Integrating Lipid and Starch Grain Analyses From Pottery Vessels to Explore Prehistoric Foodways in Northern Gujarat, India. Frontiers in Ecology and Evolution, 10, 840199. https://doi.org/10.3389/FEVO.2022.840199/BIBTEX
Gavrilenko, T., Chukhina, I., Antonova, O., Krylova, E., Shipilina, L., Oskina, N., & Kostina, L. (2023). Comparative Analysis of the Genetic Diversity of Chilean Cultivated Potato Based on a Molecular Study of Authentic Herbarium Specimens and Present-Day Gene Bank Accessions. Plants, 12(1). https://doi.org/10.3390/PLANTS12010174/S1
Ginzberg, I., Tokuhisa, J., & Veilleux, R. (2008). Potato Steroidal Glycoalkaloids: Biosynthesis and Genetic Manipulation. Potato Research 52:1, 52(1), 1–15. https://doi.org/10.1007/S11540-008-9103-4
Haddadin, M., Humeid, M., Qaroot, F., & Robinson, R. (2001). Effect of exposure to light on the solanine content of two varieties of potato (Solanum tuberosum) popular in Jordan. Food Chemistry, 73(2), 205–208. https://doi.org/10.1016/S0308-8146(00)00279-X
Idrovo, J. (2002). El formativo en la Sierra Ecuatoriana. In P. Ledergerber -Crespo (Ed.), Formativo en la Sierra Ecuatoriana Jaime Idrovo Urigüen (3era., pp. 114–123). Abya-Yala.
Izawa, K., Amino, Y., Kohmura, M., Ueda, Y., & Kuroda, M. (2010). Human–Environment Interactions – Taste. Comprehensive Natural Products II: Chemistry and Biology, 4, 631–671. https://doi.org/10.1016/B978-008045382-8.00108-8
Jorgensen, K., Garcia, O., Kiyamu, M., Brutsaert, T., & Bigham, A. (2023). Genetic adaptations to potato starch digestion in the Peruvian Andes. American Journal of Biological Anthropology, 180(1), 162–172. https://doi.org/10.1002/AJPA.24656
Kuete, V. (2014). Health Effects of Alkaloids from African Medicinal Plants. Toxicological Survey of African Medicinal Plants, 611–633. https://doi.org/10.1016/B978-0-12-800018-2.00021-2
Kurek, J. (2019). Introductory Chapter: Alkaloids - Their Importance in Nature and for Human Life. Alkaloids - Their Importance in Nature and Human Life. https://doi.org/10.5772/INTECHOPEN.85400
Liu, W., Zhang, N., Li, B., Fan, S., Zhao, R., Li, L. P., Wu, G. H., & Zhao, Y. (2014). Determination of α-chaconine and α-solanine in commercial potato crisps by QuEChERS extraction and UPLC-MS/MS. Chemical Papers, 68(11), 1498–1504. https://doi.org/10.2478/S11696-014-0617-8/MACHINEREADABLECITATION/RIS
Louderback, L., & Pavlik, B. (2017). Starch granule evidence for the earliest potato use in North America. Proceedings of the National Academy of Sciences of the United States of America, 114(29), 7606–7610. https://doi.org/10.1073/PNAS.1705540114/SUPPL_FILE/PNAS.201705540SI.PDF
Martín, I. (2011). Determinación de glicoalcaloides: α-solanina y α-chaconina en patata mediante cromatografía de líquidos de ultra presión acoplada a espectrometría de masas de triple cuadrupolo. [Universidad de Almería]. http://hdl.handle.net/10835/491
McGehee, D., Krasowski, M., Fung, D., Wilson, B., Gronert, G., & Moss, J. (2000). Cholinesterase inhibition by potato glycoalkaloids slows mivacurium metabolism. Anesthesiology, 93(2), 510–519. https://doi.org/10.1097/00000542-200008000-00031
McWilliams, M., Blankemeyer, J., & Friedman, M. (2000). The folic acid analogue methotrexate protects frog embryo cell membranes against damage by the potato glycoalkaloid alpha-chaconine. Food and Chemical Toxicology : An International Journal Published for the British Industrial Biological Research Association, 38(10), 853–859. https://doi.org/10.1016/S0278-6915(00)00090-9
Melton, M., Biwer, M., & Panjarjian, R. (2020). Differentiating Chuño blanco and Chuño negro in archaeological samples based on starch metrics and morphological attributes. Journal of Archaeological Science: Reports, 34, 102650. https://doi.org/10.1016/J.JASREP.2020.102650
Mensinga, T., Sips, A., Rompelberg, C., Van Twillert, K., Meulenbelt, J., Van Den Top, H., & Van Egmond, H. (2005). Potato glycoalkaloids and adverse effects in humans: an ascending dose study. Regulatory Toxicology and Pharmacology, 41(1), 66–72. https://doi.org/10.1016/J.YRTPH.2004.09.004
Mesia-Montenegro, C. (2014). El periodo formativo en los andes septentrionales y sus relaciones con los andes centrales. Arqueología y Sociedad, 0(27), 111–130.
Molestina, M. (2006). El pensamiento simbólico de los habitantes de La Florida (Quito-Ecuador). Bulletin de l’Institut Français d’études Andines, 35 (3), 377–395. https://doi.org/10.4000/bifea.3931
Ni, W., Tian, T., Zhang, L., Li, Z., Wang, L., & Ren, A. (2018). Maternal periconceptional consumption of sprouted potato and risks of neural tube defects and orofacial clefts. Nutrition Journal 2018 17:1, 17(1), 1–8. https://doi.org/10.1186/S12937-018-0420-4
Ordoñez-Araque, R., Ramos-Guerrero, L., Vargas-Jentzsch, P., Romero-Bastidas, M., Rodríguez-Herrera, N., Vallejo-Holguín, R., Fuentes-Gualotuña, C., & Ruales, J. (2024). Fatty Acids and Starch Identification within Minute Archaeological Fragments: Qualitative Investigation for Assessing Feasibility. Foods 13(7), 1090. https://doi.org/10.3390/FOODS13071090
Ordoñez-Araque, R., Ruales, J., Vargas-Jentzsch, P., Ramos-Guerrero, L., Romero-Bastidas, M., Montalvo-Puente, C., & Serrano-Ayala, S. (2022). Pre-Hispanic Periods and Diet Analysis of the Inhabitants of the Quito Plateau (Ecuador): A Review. Heritage, 5(4), 3446–3462. https://doi.org/10.3390/HERITAGE5040177
Pearsall, D. (2003). Plant food resources of the Ecuadorian Formative: an overview and comparison to the Central Andes. In Raymond & L. Burger (Eds.), Archaeology of Formative Ecuador (pp. 213–257). Dumbarton Oaks Research Library and Collection.
Pearsall, D. (2008). Plant Domestication and the Shift to Agriculture in the Andes. In The Handbook of South American Archaeology (pp. 105–120). Springer, New York, NY. https://doi.org/10.1007/978-0-387-74907-5_7
Prasad, A., Patel, P., Pandey, S., Niranjan, A., & Misra, P. (2020). Growth and alkaloid production along with expression profiles of biosynthetic pathway genes in two contrasting morphotypes of prickly and prickleless Solanum viarum Dunal. Protoplasma, 257(2), 561–572. https://doi.org/10.1007/S00709-019-01446-3/METRICS
Romanucci, V., Pisanti, A., Di Fabio, G., Davinelli, S., Scapagnini, G., Guaragna, A., & Zarrelli, A. (2016). Toxin levels in different variety of potatoes: Alarming contents of α-chaconine. Phytochemistry Letters, 16, 103–107. https://doi.org/10.1016/J.PHYTOL.2016.03.013
Rondon, S., Carrillo, C., Cuesta, H., Navarro, P., & Acuña, I. (2022). Latin America potato production: pests and foes. In Insect Pests of Potato: Global Perspectives on Biology and Management (pp. 317–330). Academic Press. https://doi.org/10.1016/B978-0-12-821237-0.00019-6
Rumold, C., & Aldenderfer, M. (2016). Late Archaic-Early Formative period microbotanical evidence for potato at Jiskairumoko in the Titicaca Basin of southern Peru. Proceedings of the National Academy of Sciences of the United States of America, 113(48), 13672–13677. https://doi.org/10.1073/PNAS.1604265113/SUPPL_FILE/PNAS.201604265SI.PDF
Schrenk, D., Bignami, M., Bodin, L., Chipman, J. K., Mazo, J. del, Hogstrand, C., Hoogenboom, L. (Ron), Leblanc, J., Nebbia, C. S., Nielsen, E., Ntzani, E., Petersen, A., Sand, S., Schwerdtle, T., Vleminckx, C., Wallace, H., Brimer, L., Cottrill, B., Dusemund, B., … Grasl-Kraupp, B. (2020). Risk assessment of glycoalkaloids in feed and food, in particular in potatoes and potato-derived products. EFSA Journal, 18(8), 6222. https://doi.org/10.2903/J.EFSA.2020.6222
Sharma, S., Jaiswal, A., & Jaiswal, S. (2020). Chapter 21 - Potato. Nutritional Composition and Antioxidant Properties of Fruits and Vegetables, 339–347. https://doi.org/10.1016/B978-0-12-812780-3.00021-0
Shoji, K., Vásquez S., V. F., & Rosales T., T. E. (2023). Starch grains on human teeth as evidence for 4000 BCE potato consumption at the Cruz Verde site, northern coast of Peru. Journal of Archaeological Science: Reports, 51, 104152. https://doi.org/10.1016/J.JASREP.2023.104152
Simões, J. (2008). Evenenamento por glicoalcalóides da batata (solanum tuberosum) em bovinos. Veterinaria, 1–6.
Song, J., Wang, X., Wang, Y., Zhang, Y., & Yu, Y. J. (2020). High-throughput identification of volatile and semi-volatile organic compounds in archaeological samples by gas chromatography–mass spectrometry combined with advanced chemometrics methodology. Microchemical Journal, 158, 105289. https://doi.org/10.1016/J.MICROC.2020.105289
Stoessel, L., Martínez, G., & Constenla, D. (2015). Preliminary analysis of fatty acids recovered from archaeological pottery of the lower course of the Colorado River (North-eastern Patagonia): Contributions to the hunter-gatherers subsistence patterns. Magallania, 43(1), 231–249. https://doi.org/10.4067/s0718-22442015000100013
Urugo, M., & Tringo, T. (2023). Naturally Occurring Plant Food Toxicants and the Role of Food Processing Methods in Their Detoxification. International Journal of Food Science, 2023. https://doi.org/10.1155/2023/9947841
Vélez-Terreros, P., & Pilaquinga, F. (2016). Extracción e identificación de la solanina obtenida del fruto de la berenjena (Solanum melongena L.). InfoANALÍTICA, 4(1), 21–32. https://doi.org/10.26807/IA.V4I1.8
Villalba, M. (1988). Cotocollao: una aldea formativa del valle de Quito : Vol. Serie Monográfica 2 (Museo del Banco Central del Ecuador, Ed.). Miscelánea antropológica Ecuatoriana.
Yamashoji, S., & Matsuda, T. (2013). Synergistic cytotoxicity induced by α-solanine and α-chaconine. Food Chemistry, 141(2), 669–674. https://doi.org/10.1016/J.FOODCHEM.2013.03.104
Zarins, R., & Kruma, Z. (2017). Glycoalkaloids in potatoes: a review. https://doi.org/10.22616/FOODBALT.2017.002
Zarrillo, S., Gaikwad, N., Lanaud, C., Powis, T., Viot, C., Lesur, I., Fouet, O., Argout, X., Guichoux, E., Salin, F., Solorzano, R. L., Bouchez, O., Vignes, H., Severts, P., Hurtado, J., Yepez, A., Grivetti, L., Blake, M., & Valdez, F. (2018). The use and domestication of Theobroma cacao during the mid-Holocene in the upper Amazon. Nature Ecology & Evolution, 2(12), 1879–1888. https://doi.org/10.1038/s41559-018-0697-x
Zeidler, J. (2008). The Ecuadorian Formative. The Handbook of South American Archaeology, 459–488. https://doi.org/10.1007/978-0-387-74907-5_24
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Roberto Ordoñez, Carlos Montalvo-Puente, Martha Romero-Bastidas, Luis Ramos-Guerrero, Paul Vargas-Jentzsch
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Those authors who have publications with this Journalaccept the following terms:
a. Authors will retain their copyrights and guarantee the journal the right of first publication of their work, which will be simultaneously subject to the Creative Commons Attribution License (Licencia de reconocimiento de Creative Commons) that allows third parties to share the work as long as its author and his first publication in this journal.
b. Authors may adopt other non-exclusive licensing agreements for the distribution of the version of the published work (eg, deposit it in an institutional electronic file or publish it in a monographic volume) provided that the initial publication in this journal is indicated.
c. Authors are allowed and recommended to disseminate their work on the Internet (eg in institutional telematic archives or on their website) before and during the submission process, which can lead to interesting exchanges and increase citations of the published work. (See The Effect of Open Access - El efecto del acceso abierto)