Potenciais da nutrigenética na abordagem e tratamento de doenças cardiovasculares e fatores de risco associados
DOI:
https://doi.org/10.31053/1853.0605.v79.n2.30289Palavras-chave:
genes, nutrição, genómica, doença cardiovascularResumo
Introdução: A partir da nutrigenética, estudo do efeito que a variação genética exerce sobre a resposta individual à dieta, é possível compreender e modular a resposta clínica condicionada pelo genótipo pela dieta.
Objetivo: explorar as evidências bibliográficas sobre o potencial da nutrigenética na abordagem e tratamento das doenças cardiovasculares (DCV) e fatores de risco associados.
Materiais e métodos: foi realizada uma busca sistemática de publicações nas bases de dados eletrônicas MEDLINE, EMBASE e Google Scholar. Foram incluídos os artigos que continham as palavras-chave ou uma combinação delas, no período 1990-2019, tanto de estudos experimentais quanto observacionais.
Resultados: foram incluídos 49 artigos, classificados de acordo com as principais vias moleculares envolvidas na etiopatogenia das DCV. Embora tenha sido encontrada uma grande diversidade de variantes genéticas que conferem suscetibilidade às DCV e a fatores de risco como obesidade, dislipidemia e hipertensão arterial, pouca consistência foi observada na publicação de estudos de replicação.
Conclusões: o conhecimento das variantes genéticas permite a personalização da dieta, podendo ser complementada com outras recomendações saudáveis associadas ao estilo de vida. Mais estudos em grandes populações e meta-análises são necessários para mostrar inequivocamente a relação gene-nutriente.
Downloads
Referências
1. Xacur-García F, Castillo-Quan J, Hernández-Escalante V, Laviada-Molina H. Genómica nutricional: una aproximación de la interacción genoma-ambiente. Rev Méd Chil 2008; 136:1460-67.
2. Neeha VS, Kinth PJ. Nutrigenomics research: a review. Food Sci Technol. 2013; 50:415-28.
3. Ferguson LR, De Caterina R, Görman U, Allayee H, Kohlmeier M, Prasad C, et al. Guide and Position of the International Society of Nutrigenetics/Nutrigenomics on Personalised Nutrition: Part 1 - Fields of Precision Nutrition. J Nutrigenet Nutrigenomics. 2016; 9:12-27.
4. Gil Hernández Á. Current challenges of nutrition applied research: ¿person or population? Nutr Hosp. 2018; 35:39-43.
5. Blanck HM, Bowman BA, Cooper GR, Myers GR, Miller DT. Laboratory issues: use of nutritional biomarkers. J. Nutr. 2003; 133:888S–94S.
6. Aljanabi SM, Martinez I. Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. Nucleic Acids Res. 1997; 25:4692-3.
7. De Vries PS, Sabater-Lleal M, Chasman DI, Trompet S, Ahluwalia TS, Teumer A, et al. Comparison of HapMap and 1000 Genomes Reference Panels in a Large-Scale Genome-Wide Association Study. PLoS ONE. 2017; 12: e0167742.
8. WHO. Preventing chronic diseases: A vital investment. 2005. http://www.who.int/chp/chronic_disease_report/full_report.pdf. Accessed November 30, 2019.
9. Costantino S, Libby P, Kishore R, Tardif JC, El-Osta A, Paneni F. Epigenetics and precision medicine in cardiovascular patients: from basic concepts to the clinical arena. Eur Heart J. 2018; 39:4150-8.
10. Myhrstad MC, Retterstol K, Telle-Hansen VH, Ottestad I, Halvorsen B, Holven KB, et al. Effect of marine n-3 fatty acids on circulating inflammatory markers in healthy subjects and subjects with cardiovascular risk factors. Inflamm Res 2011; 60:309-19.
11. Ordovas JM, Corella D, Cupples LA, Demissie S, Kelleher A, Coltell O, et al. Polyunsaturated fatty acids modulate the effects of the APOA1 G-A polymorphism on HDL-cholesterol concentrations in a sex-specific manner: the Framingham Study. Am J Clin Nutr. 2002; 75:38-46.
12. Lopez-Miranda J, Ordovas JM, Espino A, Marin C, Salas J, Lopez-Segura F, et al. Influence of mutation in human apolipoprotein A-1 gene promoter on plasma LDL cholesterol response to dietary fat. Lancet. 1994; 343:1246-9.
13. von Eckardstein A, Funke H, Chirazi A, Chen- Haudenschild C, Schulte H, Schonfeld R, et al. Sex-specific effects of the glutamine/histidine polymorphism in apo A - IV on HDL metabolism. Arterioscler Thromb. 1994; 14:1114-20.
14. Jansen S, López Miranda J, Salas J, Ordovas JM, Castro P, Marín C, et al. Effect of 347-serine mutation in apoprotein A-IV on plasma LDL cholesterol response to dietary fat. Arterioscler Thromb Vasc Biol. 1997; 17:1532-8.
15. Jang Y, Kim JY, Kim OY, Lee JE, Cho H, Ordovas JM, et al. The -1131T-->C polymorphism in the apolipoprotein A5 gene is associated with postprandial hypertriacylglycerolemia; elevated small, dense LDL concentrations; and oxidative stress in nonobese Korean men. Am J Clin Nutr. 2004; 80:832-40.
16. Hubacek JA, Bohuslavova R, Skodova Z, Pitha J, Bobkova D, Poledne R. Polymorphisms in the APOA1/C3/A4/A5 gene cluster and cholesterol responsiveness to dietary change. Clin Chem Lab Med. 2007; 45:316-20.
17. Pullinger CR, Aouizerat BE, Movsesyan I, Durlach V, Sijbrands EJ, Nakajima K, et al. An apolipoprotein A-V gene SNP is associated with marked hypertriglyceridemia among Asian-American patients. J Lipid Res. 2008; 49:1846-54.
18. Patel A, Rees SD, Kelly MA, Bain SC, Barnett AH, Thalitaya D, et al. Association of variants within APOE, SORL1, RUNX1, BACE1 and ALDH18A1 with dementia in Alzheimer's disease in subjects with Down syndrome. Neurosci Lett. 2011; 487:144-8.
19. Atis O, Sahin S, Ceyhan K, Ozyurt H, Akbas A, Benli I. The Distribution of Apolipoprotein E Gene Polymorphism and Apolipoprotein E Levels among Coronary Artery Patients Compared to Controls. Eurasian J Med. 2016; 48:90-4.
20. Minihane AM, Jofre-Monseny L, Olano-Martin E, Rimbach G. ApoE genotype, cardiovascular risk and responsiveness to dietary fat manipulation. Proc Nutr Soc. 2007; 66:183-97.
21. Villeneuve S, Brisson D, Marchant NL, Gaudet D. The potential applications of Apolipoprotein E in personalized medicine. Frontiers in Aging Neuroscience. 2014; 6:154.
22. Rizzi F, Conti C, Dogliotti E, Terranegra A, Salvi E, Braga D, et al. Interaction between polyphenols intake and PON1 gene variants on markers of cardiovascular disease: a nutrigenetic observational study. J Transl Med. 2016; 14:186.
23. Estrada-Luna D, Martínez-Hinojosa E, Cancino-Diaz JC, Belefant-Miller H, López-Rodríguez G, Betanzos-Cabrera G. Daily supplementation with fresh pomegranate juice increases paraoxonase 1 expression and activity in mice fed a high-fat diet. Eur J Nutr. 2018; 57:383-9.
24. Comba A, Lin YH, Eynard AR, Valentich MA, Fernandez-Zapico ME, Pasqualini ME. Basic aspects of tumor cell fatty acid-regulated signaling and transcription factors. Cancer Metastasis Rev. 2011; 30:325-42.
25. Tai ES, Corella D, Demissie S, Cupples LA, Coltell O, Schaefer EJ, et al. Polyunsaturated fatty acids interact with the PPARA-L162V polymorphism to affect plasma triglyceride and apolipoprotein C-III concentrations in the Framingham Heart Study. J Nutr. 2005; 135:397-403.
26. Caron-Dorval D, Paquet P, Paradis AM, Rudkowska I, Lemieux S, Couture P, et al. Effect of the PPAR-Alpha L162V polymorphism on the cardiovascular disease risk factor in response to n-3 polyunsaturated fatty acids. J Nutrigenet Nutrigenomics. 2008; 1:205-12.
27. Riestra P, López-Simón L, Ortega H, Gorgojo L, Martin-Moreno JM, et al. Fat intake influences the effect of the hepatic lipase C-514T polymorphism on HDL-cholesterol levels in children. Exp Biol Med (Maywood). 2009; 234:744-9
28. Cai G, Zhang B, Shi G, Weng W, Ma C, Song Y, et al. The associations between proprotein convertase subtilisin/kexin type 9 E670G polymorphism and the risk of coronary artery disease and serum lipid levels: a meta-analysis. Lipids Health Dis. 2015; 14:149.
29. Abboud S, Karhunen PJ, Lütjohann D, Goebeler S, Luoto T, Friedrichs S, et al. Proprotein convertase subtilisin/kexin type 9 (PCSK9) gene is a risk factor of large-vessel atherosclerosis stroke. PLoS One. 2007; 2:e1043.
30. Das UN, Repossi G, Dain A, Eynard AR. L-arginine, NO and asymmetrical dimethylarginine in hypertension and type 2 diabetes. Front Biosci (Landmark Ed). 2011; 16:13-20.
31. Curti ML, Pires MM, Barros CR, Siqueira-Catania A, Rogero MM, Ferreira SR. Associations of the TNF-alpha -308 G/A, IL6 -174 G/C and AdipoQ 45 T/G polymorphisms with inflammatory and metabolic responses to lifestyle intervention in Brazilians at high cardiometabolic risk. Diabetol Metab Syndr. 2012; 4:49.
32. Terry CF, Loukaci V, Green FR. Cooperative influence of genetic polymorphisms on interleukin 6 transcriptional regulation. J Biol Chem. 2000; 275:18138-44.
33. Cook NR, Albert CM, Gaziano JM, Zaharris E, MacFadyen J, Danielson E, et al. A randomized factorial trial of vitamins C and E and beta carotene in the secondary prevention of cardiovascular events in women: results from the Women's Antioxidant Cardiovascular Study. Arch Intern Med. 2007; 167:1610-8.
34. Żur-Wyrozumska K, Pera J, Dziubek A, Sado M, Golenia A, Slowik A, et al. Association between C677T polymorphism of MTHFR gene and risk of amyotrophic lateral sclerosis: Polish population study and a meta-analysis. Neurol Neurochir Pol. 2017; 51:135-139.
35. Leeson CP, Hingorani AD, Mullen MJ, Jeerooburkhan N, Kattenhorn M, Cole TJ, et al. Glu298Asp endothelial nitric oxide synthase gene polymorphism interacts with environmental and dietary factors to influence endothelial function. Circ Res. 2002; 90:1153-8.
36. Cipollina C, Salvatore SR, Muldoon MF, Freeman BA, Schopfer FJ. Generation and dietary modulation of anti-inflammatory electrophilic omega-3 fatty acid derivatives. PLoS One. 2014; 9:e94836.
37. Zhang L, Miyaki K, Araki J, Song Y, Kimura T, Omae K, Muramatsu M. Interaction of angiotensin I-converting enzyme insertion-deletion polymorphism and daily salt intake influences hypertension in Japanese men. Hypertens Res. 2006; 29:751-8.
38. Sun J, Zhao M, Miao S, Xi B. Polymorphisms of three genes (ACE, AGT and CYP11B2) in the renin-angiotensin-aldosterone system are not associated with blood pressure salt sensitivity: A systematic meta-analysis. Blood Press. 2016; 25:117-22.
39. Ely BR, Clayton ZS, McCurdy CE, Pfeiffer J, Minson CT. Meta-inflammation and cardiometabolic disease in obesity: Can heat therapy help? Temperature (Austin). 2017; 5:9-21.
40. Goyenechea E, Collins LJ, Parra D, Abete I, Crujeiras AB, O'Dell SD, et al. The - 11391 G/A polymorphism of the adiponectin gene promoter is associated with metabolic syndrome traits and the outcome of an energy-restricted diet in obese subjects. Horm Metab Res. 2009; 4:55-61.
41. Lu JF, Zhou Y, Huang GH, Jiang HX, Hu BL, Qin SY. Association of ADIPOQ polymorphisms with obesity risk: a meta-analysis. Hum Immunol. 2014; 75:1062-8.
42. Lanas F, Serón P, Saavedra N, Ruedlinger J, Salazar L. Genetic and Non-Genetic Determinants of Circulating Levels of Adiponectin in a Cohort of Chilean Subjects. Mol Diagn Ther. 2015; 19:197-204.
43. Luis DA, Aller R, Izaola O, Gonzalez Sagrado M, Conde R. Modulation of insulin concentrations and metabolic parameters in obese patients by -55CT polymorphism of the UCP3 gene secondary to two hypocaloric diets. Horm Metab Res. 2009; 41:62-6.
44. Zou ZC, J Mao L, Shi YY, Chen JH, Wang LS, Cai W. Effect of exercise combined with dietary intervention on obese children and adolescents associated with the FTO rs9939609 polymorphism. Eur Rev Med Pharmacol Sci. 2015; 19:4569-75.
45. Dougkas A, Yaqoob P, Givens DI, Reynolds CK, Minihane AM. The impact of obesity-related SNP on appetite and energy intake. Br J Nutr. 2013; 110:1151-6.
46. Eldosouky MK, Abdu Allah AM, AbdElmoneim A, Al-Ahmadi NS. Correlation between serum leptin and its gene expression to the anthropometric measures in overweight and obese children. Cell Mol Biol (Noisy-le-grand). 2018; 64:84-90.
47. Phillips CM, Goumidi L, Bertrais S, Field MR, Ordovas JM, Cupples LA, et al. Leptin receptor polymorphisms interact with polyunsaturated fatty acids to augment risk of insulin resistance and metabolic syndrome in adults. J Nutr. 2010; 140:238-44.
48. Navarro P, de Dios O, Gavela-Pérez T, Soriano-Guillen L, Garcés C. Relationship between polymorphisms in the CRP, LEP and LEPR genes and high sensitivity C-reactive protein levels in Spanish children. Clin Chem Lab Med. 2017; 55:1690-5.
49. Khalilitehrani A, Qorbani M, Hosseini S, Pishva H. The association of MC4R rs17782313 polymorphism with dietary intake in Iranian adults. Gene. 2015; 563:125-9.
50. Ortega-Azorín C, Sorlí JV, Asensio EM, Coltell O, Martínez-González MÁ, Salas-Salvadó J, et al. Associations of the FTO rs9939609 and the MC4R rs17782313 polymorphisms with type 2 diabetes are modulated by diet, being higher when adherence to the Mediterranean diet pattern is low. Cardiovasc Diabetol. 2012; 11:137.
51. Geller F, Reichwald K, Dempfle A, Illig T, Vollmert C, Herpertz S, et al. Melanocortin-4 receptor gene variant I103 is negatively associated with obesity. Am J Hum Genet. 2004; 74:572-81
52. Alam U, Asghar O, Azmi S, Malik RA. General aspects of diabetes mellitus. Handb Clin Neurol. 2014; 126:211-22.
53. Bo S, Cassader M, Cavallo-Perin P, Durazzo M, Rosato R, Gambino R. The rs553668 polymorphism of the ADRA2A gene predicts the worsening of fasting glucose values in a cohort of subjects without diabetes. A population-based study. Diabet Med. 2012; 29:549-52.
54. Chen X, Liu L, He W, Lu Y, Ma D, Du T, et al. Association of the ADRA2A polymorphisms with the risk of type 2 diabetes: a meta-analysis. Clin Biochem. 2013; 46:722-6.
55. Tönjes A, Stumvoll M. The role of the Pro12Ala polymorphism in peroxisome proliferator-activated receptor gamma in diabetes risk. Curr Opin Clin Nutr Metab Care. 2007; 10:410-4.
56. Montagnana M, Fava C, Nilsson PM, Engström G, Hedblad B, Lippi G, et al. The Pro12Ala polymorphism of the PPARG gene is not associated with the metabolic syndrome in an urban population of middle-aged Swedish individuals. Diabet Med. 2008; 25:902-8.
57. Frederiksen L, Brødbaek K, Fenger M, Jørgensen T, Borch-Johnsen K, Madsbad S, et al. Comment: studies of the Pro12Ala polymorphism of the PPAR-gamma gene in the Danish MONICA cohort: homozygosity of the Ala allele confers a decreased risk of the insulin resistance syndrome. J Clin Endocrinol Metab. 2002; 87:3989-92.
58. Voight BF, Scott LJ, Steinthorsdottir V, Morris AP, Dina C, Welch RP, et al. Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis. Nat Genet. 2010; 42:579-89.
59. Tong Y, Lin Y, Zhang Y, Yang J, Zhang Y, Liu H, et al. Association between TCF7L2 gene polymorphisms and susceptibility to type 2 diabetes mellitus: a large Human Genome Epidemiology (HuGE) review and meta-analysis. BMC Med Genet. 2009; 10:5.
60. Bodhini D, Gaal S, Shatwan I, Ramya K, Ellahi B, Surendran S, et al. Interaction between TCF7L2 polymorphism and dietary fat intake on high density lipoprotein cholesterol. PLoS One. 2017; 12:e0188382.
61. Hindy G, Mollet IG, Rukh G, Ericson U, Orho-Melander M. Several type 2 diabetes-associated variants in genes annotated to WNT signaling interact with dietary fiber in relation to incidence of type 2 diabetes. Genes Nutr. 2016; 11:6.
62. Corella D, Carrasco P, Sorlí JV, Estruch R, Rico-Sanz J, Martínez-González MA, et al. Mediterranean diet reduces the adverse effect of the TCF7L2-rs7903146 polymorphism on cardiovascular risk factors and stroke incidence: a randomized controlled trial in a high-cardiovascular-risk population. Diabetes Care. 2013; 36:3803-11.
Downloads
Publicado
Edição
Seção
Licença
Copyright (c) 2022 Universidad Nacional de Córdoba
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial 4.0 International License.
A geração de trabalhos derivados é permitida, desde que não seja feita para fins comerciais. O trabalho original não pode ser usado para fins comerciais.