The History of Science and Computational Simulation in Physics teaching and learning

Authors

  • Pedro Rosa Faculdade de Tecnologia Prof. Wilson R. R. de Camargo, Rod. Mario Batista Mori, 971, Jardim Aeroporto, Cep: 18280-000, Tatuí, SP, Brasil.
  • Aguinaldo de Souza

DOI:

https://doi.org/10.55767/2451.6007.v33.n2.35302

Keywords:

Physics teaching, History of science, Computational simulation, Debate, Autonomy

Abstract

In this work, we will show how it is possible to link the History of Science and Computational Simulation to create an environment of
autonomy for the student in his learning, thinking the student as responsible for his formative walk. Having to adapt more and more
to new technological tools, also valid in the continuing education of science and technology teachers, this student must be able to
acquire, during his training process, skills and competences of an autonomous and self-critical being. We will take as an example a
scientific debate between Jean de Boissoudy and Edmound Bauer on quantum theory and the specific heat of solids, which has historical significance, although it can be considered peripheral to common sense, for those who have little intimacy with the Historiography
of Science.

References

Barr, E. S. (1960). Historical Survey of the Early Development of the Infrared Spectral Region, American Journal of Physics, 28(1), 42-54. doi: 10.1119/1.1934975.

Bauer, E. (1913a). Recherches sur le Rayonnement, Annales de Chimie et de Physique, 29(8), 5-69.

Bauer, E. (1913b). Sur la loi du rayonnement noir et la théorie des quanta. Remarques sur un travail de M. J. de

Boissoudy, Journal de Physique Théorique et Appliquée, 3(1), 641-649. doi: 10.1051/jphystap:019130030064101.

Boissoudy, J. (1913a). Sur la loi du rayonnement noir et la théorie des quanta. Comptes Rendus. 156, 765-768.

Boissoudy, J. (1913b). Sur une nouvelle forme de la loi du rayonnement noir et de l'hypothèse des quanta. Comptes Rendus. 156, 385-396.

Boissoudy, J. (1913c). Sur la loi du rayonnement noir. Réponse à M. E. Bauer. Journal de Physique Theorique et Applique, 3(1), 649-651.

Brush, S. G. (1970). The wave theory of heat: A forgotten stage in the transition from the caloric theory to thermodynamics, The British Journal for the History of Science, 5(2), 145-167.

Butterfield, H. (1965) The Whig Interpretation by Herbert. New York: The Norton Library.

Das, K. (2011). https://demonstrations.wolfram.com/HeatCapacityOfSolidsInTheDebyeApproximation/.

Debye, P. (1912). Zur Theorie der spezifischen Wärmen, Annalen der Physik, 344(14), 789-839.

Dulong, P. L., Petit, A. T. (1819). Sur quelques points importuns de la théorie de la chaleur, Annales de Chimie et de Physique, X, 395–413.

Einstein, A. (1906). Die Plancksche Theorie der Strahlung und die Theorie der spezifischen Wärme, Annalen der Physik, 327(1), 180-190.

Feyerabend, P. (1975). Contra o Método. Rio de Janeiro: Livraria Francisco Alves.

Einstein, A. (2005). A teoria da radiação de Planck e a teoria do calor específico, Revista Brasileira de Ensino de Física, 27(1), 63–67. doi: 10.1590/s1806-11172005000100006.

Fox, R. (1968). The background to the discovery of Dulong and Petit’s law, The British Journal for the History of Science, 4(1), 1-22.

Jagdish, M. (1975). The Solvay on Conferences on Physics - Aspects of the development on Physics since 1911. Boston: D. Reidel Publising Company.

Popper, K. (2010). Textos Escolhidos. Rio de Janeiro: Editora Contraponto, Editora PUC-Rio.

Khun, T. S. (1978). Black Body Theory and the Quantum Discontinuity, 1894-1912. Chicago&London: Oxford University Press.

Boltzmann, L. (2012). Wissenschaftliche Abhandlungen. Fritz Hasenöhrl (Ed.). Cambridge: Cambridge University Press.

Laranjeiras, C. C. (2002). O programa de pesquisa de Ludwig Boltzmann para a mecânica estatística: uma reconstrução racional. USP - Universidade de São Paulo.

Martins, R. A. (2004). Hipóteses e interpretação experimental: a conjetura de Poincaré e a descoberta da hiperfosforescência por Becquerel e Thompson, Ciência & Educação (Bauru), 10(3), 501-516. doi: 10.1590/s1516-73132004000300013.

Planck, M. (1900). Entropie und Temperatur strahlender Wärme, Annalen der physik, 36(4), 625-792.

Planck, M. (1901). Ueber das Gesetz der Energieverteilung im Normalspectrum, Annalen der Physik, 309(3), 553-563.

doi: 10.1002/andp.19013090310.

Poincaré, H. (1911). Sur la théorie des quanta, Comptes Rendus, 153, 1103-1108.

Poincaré, H. (1912). Sur la théorie des quanta, Journal de Physique Théorique et Appliquée, 2(1), 5-34.

Prentis, J. J. (1995). Poincaré’s proof of the quantum discontinuity of nature, American Journal of Physics, 64(4), 339-350.

Pumfrey, S. (1991). History of science in the National Science Curriculum: A critical review of resources and their aims’, The British Journal for the History of Science, 24(1), 61-78. doi: 10.1017/S0007087400028454.

Rosa, P. S. (2019). Fundamentação Termodinâmica da Teoria Quântica: Subsídios Históricos, de Boltzmann a Poincaré, e Computacionais para o Ensino de Ciências.

Rosa, P. S. (2004). Louis de Broglie e as ondas de matéria, Thesis. Available at: http://www.ghtc.usp.br/server/Teses/Pedro-Sergio-Rosa.pdf.

McCormach, R. (1967). Theory the Quantum, Chicago Journals - History of Science Society, 58(1), 37-55.

Solvay, I. (1912). La Theórie Du Rayonnement et les Quanta: Rapports et Discussions de la Réunion Tenue à Bruxelles. Edited by M. de Broglie. P. Langevin. Paris: Gauthiers-Villars.

Zeleny, E. (2011). https://demonstrations.wolfram.com/EinsteinSolid/

Published

2021-11-02

Issue

Section

Investigación en Enseñanza de la Física

How to Cite

The History of Science and Computational Simulation in Physics teaching and learning. (2021). Journal of Physics Teaching, 33(2), 469-477. https://doi.org/10.55767/2451.6007.v33.n2.35302