Student reasoning when solving problems dealing with transformation and transfer of energy in the context of mechanics

Authors

  • Nicolás Gandolfo Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación
  • Laura Buteler Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación - Instituto de Física Enrique Gaviola
  • Jenaro Guisasola Universidad del País Vasco. Donostia Physics Education Research Group - Instituto de Máquina Herramienta (IMH). Escuela de Ingeniería Dual

DOI:

https://doi.org/10.55767/2451.6007.v36.n.47238

Keywords:

Energy transfer, Energy transformation, Conservation of energy in Mechanics, High school students reasonings, Phenomenography

Abstract

In this study, the reasoning of fifth-year high school students in Córdoba, Argentina, regarding the transformation and transfer of energy and the application of the principle of energy conservation in the context of mechanics is analyzed. We have analyzed the responses of 33 students to two problematic situations commonly addressed in introductory physics courses related to energy in mechanics. Phenomenography was chosen as the methodology for data analysis. This method is specifically designed to investigate the different ways in which people experience and understand a particular phenomenon. The results show that a significant percentage of students do not consider it necessary to explicitly define the system and the environment between which the energy transfer occurs when analyzing such a phenomenon.

References

Besson, U., Borghi, L., De Ambrosis, A., y Mascheretti, P. (2007). Cómo enseñar fricción: experimentos y modelos. American Journal of Physics , 75(12), 1106-1113. https://doi.org/10.1119/1.2779881

Chabay, R., Sherwood, B. y Titus, A. (2019). A unified, contemporary approach to teaching energy in introductory physics. American Journal of Physics, 87(7), 504-509. https://doi.org/10.1119/1.5109519

Colonnese, D., Heron, P., Michelini, M., Santi, L. y Stefanel, A. (2012). A vertical pathway for teaching and learning the concept of energy. Review of Science, Mathematics and ICT Education, 6(1), 21-50. https://doi.org/10.26220/rev.1696

Dirección General de Planeamiento e Información Educativa. Subsecretaría de Promoción de Igualdad y Calidad Educativa. Secretaría de Educación. Ministerio de Educación de la Provincia de Córdoba. (2012). Diseño curricular de Educación Secundaria (2012 - 2015). Orientación Ciencias Naturales. Tomo 4, p. 89, 2012. Recuperado de

https://www.igualdadycalidadcba.gov.ar/SIPECCBA/publicaciones/EducacionSecundaria/LISTO%20PDF/orientacion%20naturales28-03-12.pdf

Doménech, J. L., Gil-Pérez, D., Gras-Martí, A., Guisasola, J., Martínez-Torregrosa, J., Salinas, J., Trumper, R., Valdés, P. y Vilches, A. (2007). Teaching of energy issues: A debate proposal for a global reorientation. Science & Education, 16, 43-64. https://doi.org/10.1007/s11191-005-5036-3

Gil Pérez, D. G., Furió-Mas, C., Castro, P. V., Salinas, J., Martínez Torregrosa, J. M., Guisasola Aranzabal, J. G., González, E., Dumas-Carré, A., Goffard, M. y Pessoa de Carvalho, A. M. (1999). ¿ Tiene sentido seguir distinguiendo entre aprendizaje de conceptos, resolución de problemas de lápiz y papel y realización de prácticas de laboratorio?. Enseñanza de las Ciencias. Revista de investigación y experiencias didácticas, 17(2), 311-320. https://doi.org/10.5565/rev/ensciencias.4094

Guisasola, J., Campos, E., Zuza, K. y Zavala, G. (2023). Phenomenographic approach to understanding students’ learning in physics education. Physical Review Physics Education Research, 19(2), 020602. https://doi.org/10.1103/PhysRevPhysEducRes.19.020602

Leaton Gray, S., Scott, D. y Mehisto, P. (2018). Curriculum Reform in the European Schools: Towards a 21st century vision. Cham, Switzerland: Springer Nature. https://doi.org/10.1007/978-3-319-71464-6

Lithner, J. (2008). A research framework for creative and imitative reasoning. Educational Studies in mathematics, 67, 255-276.

López Simó, V. y Couso Lagarón, D. (2022). Un currículo operativo con 10 ideas clave sobre energía para construir a lo largo de la escolaridad. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 19(3), 350101-350114. http://dx.doi.org/10.25267/Rev_Eureka_ensen_divulg_cienc.2022.v19.i3.3501

Neumann, K. y Nordine, J. C. (2023). Energy. En M. F. Taşar y P. R. L. Heron (Eds.), The International Handbook of Physics Education Research: Learning Physics. Melville, New York: AIP Publishing.

Papadouris, N., Constantinou, C. P. y Kyratsi, T. (2008). Students' use of the energy model to account for changes in physical systems. Journal of Research in Science Teaching: The Official Journal of the National Association for Research in Science Teaching, 45(4), 444-469. https://doi.org/10.1002/tea.20235

Sabo, H. C., Goodhew, L. M. y Robertson, A. D. (2016). University student conceptual resources for understanding energy. Physical Review Physics Education Research, 12(1), 010126. https://doi.org/10.1103/PhysRevPhysEducRes.12.010126

Seeley, L., Vokos, S. y Etkina, E. (2019). Examining physics teacher understanding of systems and the role it plays in supporting student energy reasoning. American Journal of Physics, 87(7), 510-519. https://doi.org/10.1119/1.5110663

Solbes, J., Guisasola, J. y Tarín, F. (2009). Teaching energy conservation as a unifying principle in physics. Journal of Science Education and Technology, 18, 265-274. https://doi.org/10.1007/s10956-009-9149-3

Trumper, R. y Gorsky, P. (1993). Learning about energy: The influence of alternative frameworks, cognitive levels, and closed‐mindedness. Journal of Research in Science Teaching, 30(7), 637-648. https://doi.org/10.1002/tea.3660300704

Tong, D., Liu, J., Sun, Y., Liu, Q., Zhang, X., Pan, S. y Bao, L. (2023). Assessment of student knowledge integration in learning work and mechanical energy. Physical Review Physics Education Research, 19(1), 010127. https://doi.org/10.1103/PhysRevPhysEducRes.19.010127

Vilches, A. y Gil, D. (2003). Construyamos un futuro sostenible: diálogos de supervivencia. Madrid: Cambridge University Press.

Vosniadou S., Vamvakoussi X. y Skopeliti I. (2008). The framework theory approach to the problem of conceptual change. En S. Vosniadou, International Handbook of Research on Conceptual Change (3–34). New York: Routledge.

Vosniadou S. (2012). Reframing the classical approach to conceptual change preconceptions, misconceptions and synthetic models. En B. J. Fraser, K. G. Tobin y C. J. McRobbie (Eds.), Second International Handbook of Science Education (119-130). London: Springer.

Downloads

Published

2024-11-27

Issue

Section

Trabajos presentados a SIEF

How to Cite

Student reasoning when solving problems dealing with transformation and transfer of energy in the context of mechanics. (2024). Journal of Physics Teaching, 36, 167-175. https://doi.org/10.55767/2451.6007.v36.n.47238