Use of Bacillus velezensis RI3 and Pseudomonas psychrophila P10 strains as plant growth-promoting rhizobacteria in lettuce (Lactuca sativa L.)
Main Article Content
Abstract
Lettuce is cultivated on over one million hectares worldwide, with Argentina contributing 40,000 ha. Córdoba province is the second-largest producer in Argentina, but its green belt has seen significant reductions in cultivated areas. New environmentally friendly technologies are needed to improve, sustain and increase lettuce volume production. This study aimed to use plant growth-promoting rhizobacteria (PGPR) as a sustainable alternative to enhance lettuce production (Lactuca sativa L.) growth while mitigating environmental impact. Two PGPR strains, Bacillus velezensis RI3 and Pseudomonas psychrophila P10, were tested in both in vitro and field experiments. Parameters such as shoot dry weight, root dry weight, evapotranspiration, and water use efficiency were assessed. The in vitro study results demonstrated significant improvements in shoot and root dry weights for both inoculated treatments compared to the control. Field experiments, conducted on 90 m² plots, also demonstrated significant increases in shoot dry weight, with Pseudomonas psychrophila showing a 28.57 % increase and Bacillus velezensis a 8.44 % increase compared to controls. This study highlights the potential of Bacillus velezensis and Pseudomonas psychrophila as effective biofertilizers, promoting sustainable lettuce cultivation. Further research is recommended to explore the mechanisms of plant-microbe interactions to optimize PGPR application in agricultural practices.
Article Details
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
How to Cite
References
Acurio Vásconez, R. D., Mamarandi Mossot, J. E., Ojeda Shagñay, A. G., Tenorio, E. M., Chiluisa Utreras, V. P., and Vaca Suquillo, I. de los Á. (2020). Evaluación de Bacillus spp. Como rizobacterias promotoras del crecimiento vegetal (RPCV) en brócoli (Brassica oleracea var. Italica) y lechuga (Lactuca sativa). Ciencia & Tecnología Agropecuaria, 21(3), 1–16. https://doi.org/10.21930/rcta.vol21_num3_art:1465
Baysal, Ö., Lai, D., Xu, H., Siragusa, M., Çalışkan, M., Carimi, F., Teixeira da Silva, J. A., and Tör, M. (2013). A Proteomic Approach Provides New Insights into the Control of Soil-Borne Plant Pathogens by Bacillus Species. PLoS ONE, 8(1), e53182. https://doi.org/10.1371/journal.pone.0053182
Bernabeu, P. R., Pistorio, M., Torres Tejerizo, G. A., Estrada De los Santos, P., Galar, M. L., Boiardi, J. L., and Luna, M. F. (2015). Colonization and plant growth-promotion of tomato by Burkholderia tropica. Scientia Horticulturae, 191, 113-120. https://doi.org/10.1016/j.scienta.2015.05.014
Bigatton, E. D., Ayoub, I., Palmero, F., Castillejo, M. Á., Vázquez, C., Lucini, E. I., and Haro, R. J. (2024). Plant-growth promoting rhizobacteria on peanuts: Effects on yield determination, growth rates, and radiation use efficiency in field trials in Argentina. European Journal of Agronomy, 154, 127113. https://doi.org/10.1016/j.eja.2024.127113
Bigatton, E. D., Verdenelli, R. A., Haro, R. J., Ayoub, I., Barbero, F. M., Martín, M. P., Dubini, L. E., Jorrín Novo, J. V., Lucini, E. I., and Castillejo, M. Á. (2024). Metagenomic Analysis to Assess the Impact of Plant Growth-Promoting Rhizobacteria on Peanut (Arachis hypogaea L.) Crop Production and Soil Enzymes and Microbial Diversity. Journal of Agricultural and Food Chemistry, 72(40), 22385–22397. https://doi.org/10.1021/acs.jafc.4c05687
Bramhachari, P. V., Nagaraju, G. P., and Kariali, E. (2017). Metagenomic Approaches in Understanding the Mechanism and Function of PGPRs: Perspectives for Sustainable Agriculture. In V. S. Meena, P. K. Mishra, J. K. Bisht, & A. Pattanayak (Eds.), Agriculturally Important Microbes for Sustainable Agriculture (163–182). Springer. https://doi.org/10.1007/978-981-10-5589-8_8
Chauhan, M., Kimothi, A., Sharma, A., and Pandey, A. (2023). Cold adapted Pseudomonas: Ecology to Biotechnology. Frontiers in Microbiology, 14, 1218708. https://doi.org/10.3389/fmicb.2023.1218708
Cipriano, M. A. P., Lupatini, M., Lopes-Santos, L., Da Silva, M. J., Roesch, L. F. W., Destéfano, S. A. L., Freitas, S. S., and Kuramae, E. E. (2016). Lettuce and rhizosphere microbiome responses to growth promoting Pseudomonas species under field conditions. FEMS Microbiology Ecology, 92(12), 197. https://doi.org/10.1093/femsec/fiw197
Clark, K., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J., and Sayers, E. W. (2016). GenBank. Nucleic Acids Research, 44(D1), D67–D72. https://doi.org/10.1093/nar/gkv1276
Defilipis, C., Pariani, S., Jimenez, A., and Bouzo, C. (2006). Respuesta al riego de lechuga (Lactuca sativa L.) cultivada en invernadero. En III Jornadas de Actualización en Riego y Fertirriego. Facultad de Ciencias Agrarias, Mendoza, Argentina.
Delitte, M., Caulier, S., Bragard, C., and Desoignies, N. (2021). Plant Microbiota Beyond Farming Practices: A Review. Frontiers in Sustainable Food Systems, 5, 624203. https://doi.org/10.3389/fsufs.2021.624203
Dey, R., Pal, K. K., Bhatt, D. M., and Chauhan, S. M. (2004). Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth-promoting rhizobacteria. Microbiological Research, 159(4), 371–394. https://doi.org/10.1016/j.micres.2004.08.004
Di-Rienzo, J. A., Casanoves, F., Balzarini, M. G., González, L., Tablada, M., and Robledo, W. (2017). InfoStat versión 2017. Grupo InfoStat, FCA, Universidad Nacional de Córdoba.
Endah Diansari, L., Saptomo, S., and Setiawan, B. I. (2019). Water and Land Productivity of Lettuce (Lactuca sativa) Cultivation on Floating Pot in Wetland. Sriwijaya Journal of Environment, 4(2), 104–108. https://doi.org/10.22135/sje.2019.4.2.104-108
Ezazi, R., Ahmadzadeh, M., Majidian, S., Stefani, E., Pindo, M., and Donati, C. (2021). Responses of cucumber (Cucumis sativus L.) rhizosphere microbial community to some agronomic management practices. FEMS Microbiology Ecology, 97(8), 107. https://doi.org/10.1093/femsec/fiab107
Ferrarezi, J. A., Carvalho-Estrada, P. D. A., Batista, B. D., Aniceto, R. M., Tschoeke, B. A. P., Andrade, P. A. D. M., Lopes, B. D. M., Bonatelli, M. L., Odisi, E. J., Azevedo, J. L., and Quecine, M. C. (2022). Effects of inoculation with plant growth-promoting rhizobacteria from the Brazilian Amazon on the bacterial community associated with maize in field. Applied Soil Ecology, 170, 104297. https://doi.org/10.1016/j.apsoil.2021.104297
Fernández, H. A., Salazar-Moreno, R., Fitz-Rodríguez, E., López Cruz, I. L., Schmidt, U., and Dannehl, D. (2023). Rendimientos y eficiencia en el uso del agua de lechuga y tomate cherry en jardines urbanos. Tecnología y Ciencias del Agua, 14(5), 220–256. https://doi.org/10.24850/j-tyca-14-05-05
Fiorilo, M. J. (2018). Consumo de agua y crecimiento de tres variedades de lechuga (Lactuca sativa L.) en etapa vegetativa inicial [Undergraduate Thesis]. Universidad Nacional de Luján. https://ri.unlu.edu.ar/xmlui/handle/rediunlu/1144
Gagliano, E., Castresana, J. E., and Díaz, B. M. (2016). Efectos de aplicación de mezcla de Trichoderma harzianum y viridae, Bacillus subtillis en lechuga sobre el rendimiento comercial. Horticultura Argentina, 35(88), 63. Resúmenes de Horticultura - XXXVIII Congreso Argentino de Horticultura. https://www.horticulturaar.com.ar/es/publicacion/88/
Glick, B. R. (2012). Plant Growth-Promoting Bacteria: Mechanisms and Applications. Scientifica, 5, 963401.
Gouda, S., Kerry, R. G., Das, G., Paramithiotis, S., Shin, H. S., and Patra, J. K. (2018). Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. Microbiological Research, 206, 131–140. https://doi.org/10.1016/j.micres.2017.08.016
Gül, A., Özaktan, H., Kıdoğlu, F., and Tüzel, Y. (2013). Rhizobacteria promoted yield of cucumber plants grown in perlite under Fusarium wilt stress. Scientia Horticulturae, 153, 22–25. https://doi.org/10.1016/j.scienta.2013.01.004
Kejela, T., Thakkar, V. R., and Patel, R. R. (2017). A novel strain of Pseudomonas inhibits Colletotrichum gloeosporioides and Fusarium oxysporum infections and promotes germination of coffee. Rhizosphere, 4, 9–15. https://doi.org/10.1016/j.rhisph.2017.05.002
Khatoon, Z., Huang, S., Rafique, M., Fakhar, A., Kamran, M. A., and Santoyo, G. (2020). Unlocking the potential of plant growth-promoting rhizobacteria on soil health and the sustainability of agricultural systems. Journal of Environmental Management, 273, 111118. https://doi.org/10.1016/j.jenvman.2020.111118
Khosravi, A., Zarei, M., and Ronaghi, A. (2018). Effect of PGPR, Phosphate sources and vermicompost on growth and nutrients uptake by lettuce in a calcareous soil. Journal of Plant Nutrition, 41(1), 80–89. https://doi.org/10.1080/01904167.2017.1381727
Kour, D., Rana, K. L., Yadav, A. N., Yadav, N., Kumar, M., Kumar, V., Vyas, P., Dhaliwal, H. S., and Saxena, A. K. (2020). Microbial biofertilizers: Bioresources and eco-friendly technologies for agricultural and environmental sustainability. Biocatalysis and Agricultural Biotechnology, 23, 101487. https://doi.org/10.1016/j.bcab.2019.101487
Kour, D., Rana, K. L., Yadav, N., Yadav, A. N., Kumar, A., Meena, V. S., Singh, B., Chauhan, V. S., Dhaliwal, H. S., and Saxena, A. K. (2019). Rhizospheric Microbiomes: Biodiversity, Mechanisms of Plant Growth Promotion, and Biotechnological Applications for Sustainable Agriculture. In A. Kumar and V. S. Meena, Plant Growth Promoting Rhizobacteria for Agricultural Sustainability (19–65). Springer. https://doi.org/10.1007/978-981-13-7553-8_2
Kumar, A., Patel, J. S., Meena, V. S., and Srivastava, R. (2019). Recent advances of PGPR based approaches for stress tolerance in plants for sustainable agriculture. Biocatalysis and Agricultural Biotechnology, 20(4), 101271. https://doi.org/10.1016/j.bcab.2019.101271
Laranjeira, S., Reis, S., Torcato, C., Raimundo, F., Ferreira, L., Carnide, V., Fernandes-Silva, A., and Marques, G. (2022). Use of Plant-Growth Promoting Rhizobacteria and Mycorrhizal Fungi Consortium as a Strategy to Improve Chickpea (Cicer arietinum L.) Productivity under Different Irrigation Regimes. Agronomy, 12(6), 1383. https://doi.org/10.3390/agronomy12061383
Instituto Nacional de Estadística y Censos (INDEC). (2021). Censo Nacional Agropecuario 2018. Resultados definitivos. https://www.indec.gob.ar/ftp/cuadros/economia/cna2018_resultados_definitivos.pdf
Leveau, J. H. J. (2007). The magic and menace of metagenomics: Prospects for the study of plant growth-promoting rhizobacteria. European Journal of Plant Pathology, 119(3), 279–300. https://doi.org/10.1007/s10658-007-9186-9
Michelon, N., Pennisi, G., Myint, N. O., Dall’Olio, G., Batista, L. P., Salviano, A. A. C., Gruda, N. S., Orsini, F., and Gianquinto, G. (2020). Strategies for Improved Yield and Water Use Efficiency of Lettuce (Lactuca sativa L.) through Simplified Soilless Cultivation under Semi-Arid Climate. Agronomy, 10(9), 1379. https://doi.org/10.3390/agronomy10091379
Mosela, M., Andrade, G., Massucato, L. R., De Araújo Almeida, S. R., Nogueira, A. F., De Lima Filho, R. B., Zeffa, D. M., Mian, S., Higashi, A. Y., Shimizu, G. D., Teixeira, G. M., Branco, K. S., Ventura Faria, M., Giacomin, R. M., Scapim, C. A., and Gonçalves, L. S. A. (2022). Bacillus velezensis strain Ag75 as a new multifunctional agent for biocontrol, phosphate solubilization and growth promotion in maize and soybean crops. Scientific Reports, 12(1), 15284. https://doi.org/10.1038/s41598-022-19515-8
Nagrale, D. T., Chaurasia, A., Kumar, S., Gawande, S. P., Hiremani, N. S., Shankar, R., Gokte-Narkhedkar, N., Renu, K. and Prasad, Y. G. (2023). PGPR: The treasure of multifarious beneficial microorganisms for nutrient mobilization, pest biocontrol and plant growth promotion in field crops. World Journal of Microbiology and Biotechnology, 39(4), 100. https://doi.org/10.1007/s11274-023-03536-0
Nederhoff, E., and Stanghellini, C. (2010). Water use efficiency of tomatoes in greenhouses and hydroponics. Practical Hydroponics & Greenhouses, 52–59.
Nguyen, M. L., Glaes, J., Spaepen, S., Bodson, B., Du Jardin, P., and Delaplace, P. (2019). Biostimulant effects of Bacillus strains on wheat from in vitro towards field conditions are modulated by nitrogen supply. Journal of Plant Nutrition and Soil Science, 182(3), 325–334. https://doi.org/10.1002/jpln.201700610
Pantoja-Guerra, M., Valero-Valero, N., and Ramírez, C. A. (2023). Total auxin level in the soil–plant system as a modulating factor for the effectiveness of PGPR inocula: A review. Chemical and Biological Technologies in Agriculture, 10(1), 6. https://doi.org/10.1186/s40538-022-00370-8
Rabbee, M., Ali, Md., Choi, J., Hwang, B., Jeong, S., and Baek, K. (2019). Bacillus velezensis: A Valuable Member of Bioactive Molecules within Plant Microbiomes. Molecules, 24(6), 1046. https://doi.org/10.3390/molecules24061046
Rai, A. and Nabti, E. (2017). Plant Growth-Promoting Bacteria: Importance in Vegetable Production. In A. Zaidi and M. S. Khan (Eds.), Microbial Strategies for Vegetable Production (23–48). Springer. https://doi.org/10.1007/978-3-319-54401-4_2
Rivera Beltrán, J. F. (2020). Evaluación del comportamiento del cultivo de lechuga (Lactuca sativa L.) y eficiencia del uso de agua utilizando poliacrilato de potasio en la Granja Experimental La Pradera, Imbabura. [Undergraduate Thesis]. Universidad Técnica del Norte.
Sarkar, B., Kumar, C., Pasari, S., Goswami, B., and Kumar Koshariya, A. (2022). Review On Pseudomonas Fluorescens: A Plant Growth Promoting Rhizobacteria. Journal of Positive School Psychology, 6, 2701–2709.
Scaturro, G. N. (2019). Evaluación de dos sistemas de producción de lechuga en hidroponia y un cultivo tradicional bajo cubierta [Undergraduate Thesis]. Universidad Nacional de Luján.
Shah, A., Nazari, M., Antar, M., Msimbira, L. A., Naamala, J., Lyu, D., Rabileh, M., Zajonc, J., and Smith, D. L. (2021). PGPR in Agriculture: A Sustainable Approach to Increasing Climate Change Resilience. Frontiers in Sustainable Food Systems, 5. https://doi.org/10.3389/fsufs.2021.667546
Singh, P., Singh, R. K., Zhou, Y., Wang, J., Jiang, Y., Shen, N., Wang, Y., Yang, L., and Jiang, M. (2022). Unlocking the strength of plant growth promoting Pseudomonas in improving crop productivity in normal and challenging environments: A review. Journal of Plant Interactions, 17(1), 220–238. https://doi.org/10.1080/17429145.2022.2029963
Steiner, F., De Queiroz, L. F. M., Zuffo, A. M., Da Silva, K. C., and De Oliveira Lima, I. M. (2021). Peanut response to co‐inoculation of Bradyrhizobium spp. and Azospirillum brasilense and molybdenum application in sandy soil of the Brazilian Cerrado. Agronomy Journal, 113(1), 623–632. https://doi.org/10.1002/agj2.20519
Stoll, A., Salvatierra-Martínez, R., González, M., Cisternas, J., Rodriguez, Á., Vega-Gálvez, A., and Bravo, J. (2021). Importance of crop phenological stages for the efficient use of PGPR inoculants. Scientific Reports, 11(1), 19548. https://doi.org/10.1038/s41598-021-98914-9
Tabassum, B., Khan, A., Tariq, M., Ramzan, M., Iqbal Khan, M. S., Shahid, N., and Aaliya, K. (2017). Bottlenecks in commercialisation and future prospects of PGPR. Applied Soil Ecology, 121, 102–117. https://doi.org/10.1016/j.apsoil.2017.09.030
Turan, M., Gulluce, M., Von Wirén, N., and Sahin, F. (2012). Yield promotion and phosphorus solubilization by plant growth–promoting rhizobacteria in extensive wheat production in Turkey. Journal of Plant Nutrition and Soil Science, 175(6), 818–826. https://doi.org/10.1002/jpln.201200054
Viano, L. (2022, March 21). Cinturón verde: La falta de tierra impacta en la producción de verduras de Córdoba. La Voz del Interior.
Win, K., Oo, A., Ohkama-Ohtsu, N., and Yokoyama, T. (2018). Bacillus Pumilus Strain TUAT-1 and Nitrogen Application in Nursery Phase Promote Growth of Rice Plants under Field Conditions. Agronomy, 8(10), 216. https://doi.org/10.3390/agronomy8100216
Yildirim, E., Karlidag, H., Turan, M., Dursun, A., and Goktepe, F. (2011). Growth, Nutrient Uptake, and Yield Promotion of Broccoli by Plant Growth Promoting Rhizobacteria with Manure. HortScience, 46(6), 932–936. https://doi.org/10.21273/HORTSCI.46.6.932
Zarei, T., Moradi, A., Kazemeini, S. A., Farajee, H., and Yadavi, A. (2019). Improving sweet corn (Zea mays L. var saccharata) growth and yield using Pseudomonas fluorescens inoculation under varied watering regimes. Agricultural Water Management, 226, 105757. https://doi.org/10.1016/j.agwat.2019.105757